Твердость титана по роквеллу - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Твердость титана по роквеллу

Твердость металлов

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

Прилагаемая нагрузка может прилагаться:

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалыИнструментПрилагаемая нагрузка, кгс
АКонус из алмаза, угол вершины которого 120°50-60
ВШарик 1/16 дюйма90-100
СКонус из алмаза, угол вершины которого 120°140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

0,196 — нагрузка на наконечник, Н;

2800 – численное значение твердости, Н/мм 2 .

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HBHVHRCHRAHSD
2282402060.736
2602752462.540
280295296544
32034034.567.549
360380397054
41544044.57361
4504804774.564
480520507668
500540527773
535580547878

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2 ),

  • где
    Р – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.
    Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:
    сплавы из железа — 30D 2 ;
    медь и ее сплавы — 10D 2 ;
    баббиты, свинцовые бронзы — 2,5D 2 .

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Математическая формула для расчета:
HV=0.189*P/d 2 МПа
HV=1,854*P/d 2 кгс/мм 2
Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, ммHBHRAHRCHRB
2,371285,166,4
2,560181,159,3
3,041572,643,8
3,530266,732,5
4,022961,82298,2
5,014377,4
5,213172,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

Твердость титана по роквеллу

Если у Вас возникают проблемы, пожалуйста дайте нам знать, отправив письмо на адрес: info@techintest.ru . Спасибо!

ГРАФИК РАБОТЫ

Часы работы нашего офиса:

Пн-Пт: 9:00 – 18:00
Сб-Вс: ВЫХОДНОЙ

ВОЙДИТЕ В СИСТЕМУ, ЧТОБЫ ПОЛУЧИТЬ ДОСТУП К ДОП. ФУНКЦИЯМ

РЕГИСТРАЦИЯ

ЗАБЫЛИ ПАРОЛЬ?

  • Главная
  • СТАТЬИ
  • Твердость. Измерение твердости по Роквеллу, Бринеллю, Виккерсу

Wednesday Jun 10th, 2020

Твердость. Измерение твердости по Роквеллу, Бринеллю, Виккерсу

Твердость – сопротивление твердого тела изменению формы (деформированию) либо разрушению в поверхностном слое при местных силовых контактных воздействиях. Проецируя это определение на методы неразрушающего контроля, можем получить следующее определение твердости: это свойство материала сопротивляться пластической деформации.

Наибольшее распространение для определения твердости металлов получили методы, основанные на вдавливании индентора в виде стального шарика (методы Бринелля и Роквелла), алмаза в форме пирамиды (метод Виккерса) или алмаза с округлой вершиной (также метод Роквелла) в испытуемый образец.

Читайте также:  Где используется титан

Давайте рассмотрим отдельной каждый из указанных методов.

Метод Роквелла – метод определения твердости материалов, преимущественно металлов, основанный на вдавливании под заданной нагрузкой в поверхность испытуемого образца специального индентора – алмаза в форме конуса либо стального закаленного шарика. Метод назван по имени разработавшего его в 1919 году американского металлурга Стенли Роквелла. Отличием данного метода является применение небольших испытательных нагрузок (60, 100 и 150 кгс), что позволяет применять его для испытания тонких образцов и окончательно обработанных изделий, а также применение специальных шкал твердости, связанных только с глубиной отпечатка.

Шкалы твердости по Роквеллу.

Существует 11 основных шкал для определения твердости по методу Роквелла. Это шкалы A; B; C; D; E; F; G; H; K; N; T, при этом, как упоминалось ранее, наиболее часто используемые среди них – это шкалы А, В и С с испытательной нагрузкой 60, 100 и 150 кгс соответственно.

Таблица 1. Наиболее широко используемые шкалы твёрдости по Роквеллу.

Шкала

Индентор

Нагрузка, кгс

Алмазный конус с углом 120° при вершине

Шарик диаметром 1/16 дюйма из карбида вольфрама (или закалённой стали)

Алмазный конус с углом 120° при вершине

Важно отметить, что чем твёрже материал, тем меньше будет глубина проникновения наконечника в него. Чтобы при большей твёрдости материала не получалось меньшее число твёрдости по Роквеллу, вводят условную шкалу глубин, принимая за одно её деление глубину, равную 0,002 мм. При испытании алмазным конусом предельная глубина внедрения составляет 0,2 мм, или 0,2/0,002 = 100 делений, при испытании шариком — 0,26 мм, или 0,26/0,002 = 130 делений.

Нормативные документы для метода Роквелла.

  • ГОСТ 9013-59. Металлы. Метод измерения твердости по Роквеллу;
  • ISO 6508-1: Metallic Materials — Rockwell Hardness Test. Part 1: Test Method (Scales A, B, C, D, E, F, G, H, K, N, T);
  • ASTM E-18 Standard Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials;
  • ASTM E-140 Standard Hardness Conversion Tables for Metals. Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness.

Метод Виккерса – метод измерения твердости металлов и сплавов, основанный на вдавливании в испытуемый материал правильной четырёхгранной алмазной пирамиды с углом 136° между противоположными гранями. При этом само значение твердости вычисляется путем деления приложенной нагрузки на площадь поверхности полученного пирамидального отпечатка.

Данный метод измерения подходит для определения значений твердости деталей малой толщины из черных и цветных металлов и сплавов; деталей, закаленных на малую глубину, а также деталей, имеющих тонкие слои гальванических покрытий. Основным недостатком метода Виккерса является зависимость измеряемой твёрдости от приложенной нагрузки или глубины внедрения индентора (явление размерного эффекта).

Нормативные документы для метода Виккерса.

  • ГОСТ 2999-75 (СТ СЭВ 470-77) – Металлы и сплавы. Метод измерения твердости по Виккерсу;
  • ISO 6507-1:2005 Metallic materials. Vickers hardness test. Part 1: Test method.

Метод Бринелля – один из основных методов определения твердости материалов, основанный на вдавливании в поверхность испытуемого материала металлического шарика из твёрдого сплава с определенным диаметром и дальнейшем измерении диаметра полученного отпечатка. В качестве инденторов используются шарики из твёрдого сплава диаметром 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала. При этом сами исследуемые материалы делят на 5 основных групп:

  • сталь, никелевые и титановые сплавы;
  • чугун;
  • медь и сплавы меди;
  • лёгкие металлы и их сплавы;
  • свинец, олово.

Кроме этого, вышеприведенные группы могут разделяться на подгруппы в зависимости от твёрдости образцов.

Нормативные документы для метода Бринелля.

  • ISO 6506-1:2014 «Metallic materials — Brinell hardness test — Part 1: Test method»;
  • ДСТУ ISO 6506-1:2007 «Визначення твердості за Брінеллем. Частина 1. Метод випробування»;
  • ASTM E-10 «Standard Test Method for Brinell Hardness of Metallic Materials»;
  • ASTM E140-07 «Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness».

Важно, также, отметить, что по ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки для метода Бринелля: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.

Среди недостатков метода можно отметить следующие: применим для материалов с твердостью не более 450 HB; измеряемые значения твердости напрямую зависят от приложенной нагрузки (обратный размерный эффект); по краям отпечатка от индентора образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка; из-за относительно большого диаметра используемых шариков данный метод неприменим для тонких образцов.

Для измерения твердости материалов по указанным методам используются специальные приборы: портативные и стационарные твердомеры. Подробнее о каждом из видов мы расскажем в следующих статьях.

Твердость титана по роквеллу

Титан (Titanium; обозначается символом Ti) – элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22.

Простое вещество титан – лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883°C. Температура плавления 1660±20°C. Титан имеет твёрдость по Бринеллю 175 МПа.

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре – 0,57% по массе, в морской воде – 0,001 мг/л. В ультраосновных породах 300 г/т, в основных – 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим восстановлением из четырёххлористого титана металлическим магнием. Полученная при этом титановая губка маркируется по твердости специально выплавленных из неё образцов. Полученный в результате последовательного дробления губки, прессования, спекания и переплавки брикетов технический титан маркируется в зависимости от содержания примесей. Поэтому содержание каждой из этих примесей ограничивается

0,02-0,06%. Аналогично, но в меньшей степени, на свойства влияют железо и кремний. Особо вредная примесь в титане и однофазных а-сплавах титана – водород. При наличии водорода по границам зерен выделяются тонкие хрупкие пластины гидридной фазы, вызывая значительную хрупкость. Водородная хрупкость наиболее опасна в сварных конструкциях из-за наличия в них внутренних напряжений. Допустимое содержание водорода в техническом титане и однофазных сплавах находится в пределах 0,008-0,012%.

Основные свойства титана

  • Цвет: серебристо-белый
  • Плотность: 4,54 г/см³
  • Температура плавления: 1668°С
  • Температура кипения: 3260°С
  • Теплопроводность: 21.9 Вт/(м·К)
  • Атомный номер: 22
  • Атомная масса: 47,9
  • Удельная теплота плавления: 358 кДж/кг
  • Удельная теплоемкость (при 20°С): 0,54 кДж/(кг.°С)
  • Модуль упругости: 112 ГПа

Механические свойства титана в большой степени зависят от содержания примесей, особенно Н, О, N и С, образующих с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Небольшое содержание кислорода, азота, углерода повышает твердость и прочность, но при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшается свариваемость, способность к пайке и штампуемость. Титан обладает высокими прочностью и удельной прочностью в условиях глубокого холода.

Технический титан хорошо обрабатывается давлением при 20-25°С и повышенных температурах. Из него изготовляют все виды прессованного и катаного полуфабриката (листы, трубы, проволоку, поковки и др.). Ковку проводят при температуре 1000-750°С, горячую прокатку – на 100°С ниже температуры ковки. Горячей прокаткой получают листы толщиной более 6 мм, листы меньшей толщины изготовляют холодной прокаткой или с нагревом до 650-700°С. Температура прессования 950-1000°С. Титан хорошо сваривается аргонодуговой и всеми видами контактной сварки. Сварной шов обладает хорошим сочетанием прочности и пластичности. Прочность шва составляет 90% прочности основного металла.

Титан плохо обрабатывается резанием, налипает на инструмент, что приводит к его быстрому износу. Для обработки титана требуется инструмент из быстрорежущей стали и твёрдых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. Недостатком титана является также низкая антифрикционность.

Титановые сплавы

Достоинством титановых сплавов по сравнению с титаном являются более высокие прочность и жаропрочность при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности. Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении. Самым распространённым в мире титановым сплавом является сплав Ti-6Al-4V, который в российской классификации имеет обозначение ВТ6. Для изготовления деталей методами порошковой технологии используют сплавы ВТ5, ВТ5-1, ОТ4, ВТЗ-1 и другие.

Читайте также:  Литье титана по выплавляемым моделям

По технологии изготовления титановые сплавы подразделяются на деформируемые, литейные и порошковые. По механическим свойствам титановые сплавы подразделяются на сплавы нормальной прочности, высокопрочные, жаропрочные, повышенной пластичности. По способности упрочняться с помощью термической обработки они делятся на упрочняемые и неупрочняемые термической обработкой; по структуре в отожженном состоянии они классифицируются на а-, псевдо-а, а + р, псевдо-р и р-сплавы.

Титановый нож (плюсы и минусы)

В современных реалиях можно встретить ножи, изготовленные как из старой доброй стали, так и из новомодного пластика. В ход идут самые неожиданные материалы, открывая перед мастерами ножеделами все новые и новые горизонты. Все это обилие и разнообразие сырья вызвано стремлением человека найти универсальное решение для производства ножевой продукции. К сожалению, за всю свою долгую историю человечество так и не сумело изобрести сферического коня в вакууме. А значит, любой материал обладает как своими плюсами, так и минусами.

Так коррозионно-стойкие стали с содержанием углерода в пределах 0,65% грешат своим излишне мягким нравом. Другими словами они плохо держат заточку и обладают низкой износоустойчивостью. Нож из 420-ой стали приходится часто править и приводить в надлежащий вид. В противовес «мягким» сталям (твердостью в 52-56 HRC) образцы, с содержанием углерода достигающим 1% и твердостью 59-61 HRC, выигрывают в плане износостойкости, но уже не являются столь коррозийно-устойчивыми.

Казалось бы, что проблемы с коррозионной устойчивостью можно решить при помощи обработки клинка специальными материалами от напыления пластмасс до твердосплавного покрытия рабочей поверхности ножа. Однако, первый вариант решает проблему коррозии и устойчивости клинка к агрессивным средам, но является недолговечным – пластмассовое покрытие быстро царапается и обладает слабой износостойкостью. А, твердосплавное покрытие, в свою очередь, даже при небольшом повреждении требует капитального ремонта, с заменой покрытия целиком.

Керамические ножи остры, легки, химически нейтральны и уже много лет радуют как домохозяек, так и шеф-поваров. Но при всех своих несомненных плюсах керамические инструменты хрупки, далеко не универсальны и требуют особого подхода к заточке.

Ножи из различных видов пластмасс тоже нельзя считать вершиной ножевой продукции. Качественный пластиковый нож требует высокотехнологичного, затратного, да еще и вредного для окружающей среды производства. В противном случае нож будет скорее бестолковой игрушкой, нежели полезной в хозяйстве вещью. Эстетически привлекательный вид и легкость ножа не смогут заменить, надлежащую хорошему инструменту, прочность и надежность.

Поиск новых решений в сфере ножевого производства, привел светлые умы современности к идее использования титановых сплавов. Титан уже давно наличествует в производстве ножей, преимущественно используясь для изготовления мелких деталей: штифтов, винтов, ручек и т.д. Легкий, прочный и биологически нейтральный материал зарекомендовал себя в таких стратегически важных отраслях как самолето – и судостроение. Но, несмотря на все это, длительное время об изготовлении полностью титановых ножей не могло быть и речи.

Титановые сплавы можно разделить на три группы:

  1. Сплавы с альфа-структурой;
  2. Сплавы альфа+бета-структурой;
  3. Сплавы с бета-структурой.

Из всех трех видов, для производства ножей подходят только сплавы, обладающие бета-структурой. Подобные сплавы содержат 25% ванадия, 2% алюминия, 15% хрома, 0,15% кислорода и до 0,3% углерода. Такой состав позволяет сочетать пластичность, прочность, упругость, высокую коррозионную устойчивость, небольшой вес и антибактериальные свойства. Твердость клинка из бета-сплава титана достигает 48 HRC. Следовательно, резать такой нож будет примерно так же как нож, выполненный из 420-ой стали.

Рассмотрим подробнее все плюсы и минусы титановых ножей. Начнем с качеств положительных.

  • Парамагнитность титана. Другими совами титан является материалом немагнитным. Не знаю, чем это может помочь в повседневной жизни, но все поклонники титановых ножей в один голос рассказывают про то, как удобно и безопасно титановыми ножами обезвреживать взрывные устройства, оснащенные магнитным взрывателем. Собственно говоря, как раз в этой области и отметилась компания Mission Knives, со своими знаменитыми подводными ножами – «MPK-Ti». Поскольку вышеозначенная функция титановых ножей является весьма специфичной и узконаправленной, то плюс (для обычных пользователей) получается сомнительный. Но раз он есть, то о нем стоило упомянуть.
  • Биологическая нейтральность. В отличие от первого свойства, биологическая нейтральность титановых ножей, является свойством полезным даже для рядовых домохозяек. Клинок не вступает в химическую реакцию при контакте с продуктами питания, а значит, гигиеничность процесса приготовления пищи остается на должном уровне. Кроме того именно биологическая нейтральность титана, обеспечила ему надежное место в производстве медицинского оборудования.
  • Коррозионная стойкость. Титановые ножи нисколько не боятся ржавчины. Нож из титанового сплава спокойно выдерживает, разрушительное для большинства металлов, воздействие морского воздуха и воды. Тонкая оксидная пленка, покрывающая титан, надежно противостоит воздействиям щелочной среды.
  • Небольшой вес. Титановые ножи не в пример легче большинства металлических инструментов. Если сравнивать аналогичные по габаритам ножи из титана и стали, то второй выиграет в весе примерно на 40%. Согласитесь, это является несомненным плюсом. Более легкий нож положительно скажется как на весе снаряжения туриста, так и на усталости руки профессионального повара.
  • Механические характеристики. Этот пункт является довольно спорным. Все познается в сравнении, а значит, если сравнивать титановые ножи с ножами пластиковыми и стальными, то результат получится неоднозначным. Титан проигрывает высоколегированным сталям, но тем ни менее является довольно прочным материалом.
  • Эстетическая привлекательность. Анодирование титана позволяет получить фантастически красивые и насыщенные цвета. Визуальная привлекательность титановых ножей делает их все более востребованными на мировом рынке.

За всеми, вышеперечисленными плюсами, скрываются и недостатки ножей из титана.

  • Невысокая износостойкость. Хорошо заточенный титановый нож не сможет удерживать свою заточку в идеальном состоянии длительное время. По сравнению со сталью титан гораздо менее твердый и быстрее теряет заточку.
  • Трудность обработки титана. Титан в отличии от других металлов плохо поддается шлифовке. Обычные станки для шлифования металлов абсолютно не подходят, для обработки титановых сплавов. Они попросту ломаются, не справляясь с колоссальными нагрузками. Для производства титановых ножей необходимо специальное оборудование.
  • Высокая цена материала. Титан является дорогим металлом, а сложность его обработки только лишь увеличивает и без того заоблачную цену.

В общем и целом титан является материалом неоднозначным и подчас непредсказуемым. Использование титановых ножей в бытовых целях является спорным. Однако, если идея поработать ножом из титана кажется Вам привлекательно, то дерзайте.

Что такое твердость по Роквеллу (HRC)?

Показатель HRС относится к шкале Роквелла по шкале твердости, часть C. Шкала Роквелла широко используется металлургами для определения того, насколько твердый кусок стали: чем больше число, тем тверже сталь. Рейтинг конкретного металла важен для изготовителя ножей, потому что более твердая сталь будет держать кромку лучше, чем более мягкая сталь.

Существует несколько различных шкал Роквелла; каждая из них используется для разных материалов. Шкала С используется специально для оценки стали, используемой в ножах и инструментах.

Показатель твердости стали

Самый высокий показатель HRC не обязательно является лучшим.

Более твердая сталь, как правило, лучше держит кромку, чем более мягкая сталь, но она также с большей вероятностью трескается или выходит из строя. На самом деле, если она действительно твердая, она может разбиться, как стекло на бетоне!

Сталь, используемая при изготовлении ножа, также имеет большое отношение к тому, насколько хорошо нож будет удерживать кромку. Каждый отдельный стальной сплав имеет свой оптимальный диапазон, который уравновешивает твердость с производительностью и предназначением.

Так почему же показатель ножа по Роквеллу имеет значение? Что такое хорошая твердость по Роквеллу для ножа?

Твердость ножа очень важна с точки зрения его производительности и долговечности. Например, более твердая сталь с RC 58-62 будет держать кромку лучше, чем более мягкая сталь. Однако, эта же самая твердая сталь менее прочна и более склонна к растрескиванию или даже поломке. Некоторые кухонные ножи с высокой твердостью требуют особой осторожности, чтобы не повредить тонкую режущую кромку.

Более мягкая сталь более долговечна за счет свой высокой упругости. В большинстве топоров и зубил используется более мягкая сталь, которая выдерживает удары, с которыми они сталкиваются в повседневной работе.

Поскольку карманные ножи и охотничьи ножи обычно не используются для строгания и рубки древесины, они выигрывают от использования более прочной стали, которая сохраняет отличную остроту для нарезки мягких материалов.

Однако, нож для выживания, к которому вы собираетесь приложить экстремальные усилия, только выиграет от твердости по Роквелу 55-58. Нож, который мог бы резать кости и твердую древесину, в первую очередь, должен быть прочным. Нож с более низкой твердостью может затупиться быстрее, но с большей вероятностью переживет большое количество ударов и механических повреждений.

Читайте также:  Часы из титана плюсы и минусы

Испытание по Роквеллу помогает производителям ножей уравновешивать три наиболее важных фактора, которые могут повлиять на качество их готовой продукции: твердость, гибкость и вязкость. Наличие этих трех факторов в правильном балансе позволяет им производить ножи для различных сфер использования.

Существует несколько различных аббревиатур, которые могут использоваться изготовителем ножей при указании твердости: HR, HRc, HR C, RC, Rc, C по шкале Роквелла, шкала твердости Роквелла C. Независимо от того, как написано о ножевой стали, все они ссылаются на одну и ту же шкалу С. Это может немного запутать, но просто знайте, что рейтинги сами по себе одинаковы – какое бы обозначение не использовал производитель.

Стэнли П. Роквелл был металлургом на заводе по производству шарикоподшипников в Новой Англии в 1919 году. Он разработал шкалу твердости для того, чтобы измерять твердость шариков для подшипников быстро, точно и с высокой повторяемостью.

Производители всего, начиная от пружин для часов и заканчивая колесами для поездов, давно нуждались в таком испытании и быстро применяли шкалу Роквелла для всех видов стали, а также других металлов, деталей. В конце концов, тест был адаптирован даже для испытаний неметаллических материалов – даже пластмасс.

Как измеряется твердость по шкале Роквелла?

Шкала Роквелла измеряет относительную твердость металла. Она основана на том, насколько глубокой является полученная вмятина при ударе тяжелого предмета. Так как же проводят испытания металла?

Во-первых, металл должен быть термически обработан и абсолютно плоским. Иначе результаты теста будут неточными.

Одним из методов является использование конуса с алмазным наконечником для принудительного удара по металлу. Затем тестеры измеряют, насколько глубоко конус проник в поверхность. Затем, это измерение преобразуется в шкалу, которая показывает различные металлы, которые были испытаны, и как они все связаны друг с другом.

Одним из небольших недостатков при испытании клинка ножа является то, что оно оставляет небольшую точечную вмятину на поверхности, что некоторые могут счесть дефектом. Знак испытания может быть скрыт, если испытание проводится в области, которая находится под рукояткой.

Тест Роквелла фактически состоит из двух тестов. Во время первого испытания создается лишь незначительное усилие, используя алмазный наконечник, похожий на карандаш в сверлильном станке. Это гарантирует, что зона испытания абсолютно плоская и является мишенью для основного испытания на давление. После того, как сделано первое измерение, тест повторяется в той же точке. Давление резко возрастает для этого второго теста, при этом приблизительно 150 кг. давления находятся на этом алмазном наконечнике.

Разница между давлением, использованным для первого и второго испытания, представляет собой число твердости по шкале Роквелла. Два (или более) испытания одного и того же куска металла дадут среднее значение для данного конкретного куска стали.

Почему всегда указывается диапазон значений по шкале Роквелла?

Поскольку испытания по Роквеллу проводятся только на небольшом участке металла, возможно, что на близлежащем участке могут быть получены слегка отличающиеся числа. Кроме того, испытание по Роквеллу проверяет только поверхность материала. Возможно, что твердость внутри может отличаться от результатов на поверхности. По этой причине производители обычно перечисляют ряд чисел для указания твердости. Наличие диапазона номеров допускает погрешность в результатах испытания. Фактические результаты для всего объекта будут находиться где-то в пределах этого диапазона.

Полное меню
Основные ссылки

Вернуться в “Каталог СНиП”

ГОСТ 30311-96 Титан губчатый. Метод определения твердости по Бринеллю.

Метод определения твердости по Бринеллю

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 105; Украинским научно-исследовательским и проектным институтом титана

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 9 от 12 апреля 1996 г .)

За принятие проголосовали:

Наименование национального органа по стандартизации

Госстандарт Республики Казахстан

Главная государственная инспекция Туркменистана

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 октября 1999 г . № 353-ст межгосударственный стандарт ГОСТ 30311-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г .

Метод определения твердости по Бринеллю

Method for determination of Brinell hardness

Дата введения 2000-07-01

1 Область применения

Настоящий стандарт устанавливает метод определения твердости по Бринеллю губчатого титана по ГОСТ 17746.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 9012-59 Металлы. Метод измерения твердости по Бринеллю

ГОСТ 17746-96 Титан губчатый. Технические условия

ГОСТ 23677-79 Твердомеры для металлов. Общие технические требования

ГОСТ 23780-96 Титан губчатый. Методы отбора и подготовки проб

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

4 Средства измерений и вспомогательные устройства

Щелевой делитель проб на 8-10 порций.

Пресс гидравлический с усилием прессования 1-1,6 МН (100-160 тс). Вакуумная дуговая печь с медным кристаллизатором диаметром 65-70 мм и высотой 70-120 мм .

5 Порядок подготовки к проведению измерений

5.1. Подготовка слитка

5.1.1. Аналитическую пробу, отобранную в соответствии с ГОСТ 23780, на щелевом делителе делят на 8-10 порций.

5.1.2. Последовательным прессованием каждой порции приготавливают электрод диаметром не менее 40 мм .

5.1.3. В вакуумной дуговой печи, очищенной механическим путем и протертой эталоном (этиловым спиртом), из расходуемого электрода выплавляют слиток диаметром (65±5) мм и высотой (80±5) мм. Остаточное давление в печи перед плавкой – не более 1,33 Па (10 мкм рт. ст.), натекание – не более 0,325 Па/(л · с) (2,5 мкм рт. ст./(л · с)).

5.2. Подготовка образца

5.2.1. Боковая поверхность выплавленного слитка обтачивается на токарном станке до удаления раковин и пор, при этом толщина удаляемого слоя должна быть не менее 5 мм .

5.2.2. Литниковую часть слитка торцуют на глубину усадочной раковины, но не менее 20 мм , от данной части отрезают слой толщиной не менее 15 мм .

Режим резания при подготовке образца: частота вращения – не более 1200 об/мин, скорость подачи – не более 0,3 мм/об, глубина резания – не более 1,5 мм .

Параметр шероховатости поверхности торцов Ra по ГОСТ 2789 должен быть не более 2,5 мкм.

6 Порядок проведения измерений

6.1. Измерение твердости проводят при температуре ( ) K .

6.2. Во время испытаний прибор должен быть защищен от ударов и вибрации.

6.3. Опорные поверхности столика и подставки, а также опорные и рабочие поверхности образца должны быть очищены от посторонних веществ.

6.4. Образец должен быть установлен на столике или подставке устойчиво во избежание его смещения во время испытания.

6.5. Испытания проводят вдавливанием стального шарика диаметром 10 мм при нагрузке 14715 Н (1500 кгс) и выдержке 30 с.

6.6. На торцах подготовленного образца наносят по три отпечатка. Расстояние между центрами двух соседних отпечатков должно быть не менее 20 мм , а расстояние от центра отпечатка до края образца – не менее 12,5 мм . Чтобы исключить влияние деформации на края отпечатков, на втором торце наносят отпечатки после измерения их на первом торце или с применением подставок.

6.7. Определение твердости проводят по диаметру или по глубине отпечатка.

6.7.1. При определении твердости по диаметру отпечатка диаметр отпечатка d измеряют с помощью микроскопа или других приборов с погрешностью измерений ±0,25 % диаметра шарика.

6.7.2. Диаметры отпечатков d1 и d2 измеряют в двух взаимно перпендикулярных направлениях. За диаметр отпечатка d принимается среднее арифметическое значение результатов измерений. Разность измерений диаметров одного отпечатка не должна превышать 3 % меньшего из них.

6.7.3. При определении твердости по глубине отпечатка глубину отпечатка h определяют с помощью индикатора с ценой деления 1 мкм.

6.7.4. Для каждого отпечатка определяют число твердости по Бринеллю (НВ) по среднему значению его диаметра или по его глубине в соответствии с приложениями А и Б, с округлением результатов значения твердости до целого числа для отпечатка с твердостью более 100 единиц НВ и до одной десятой для отпечатков с твердостью менее 100 единиц НВ.

7 Обработка результатов измерений

7.1. Значение твердости по Бринеллю определяют как среднее арифметическое результатов определения твердости шести отпечатков.

7.2. Значение твердости каждого торца образца определяют как среднее арифметическое результатов измерения твердости трех отпечатков.

8 Допустимая погрешность измерений

8.1. Расхождения результатов трех наиболее различающихся параллельных измерений твердости на торцах образца, средних значений твердости верхнего и нижнего торцов, результатов первичного и повторного определений твердости губчатого титана не должны превышать значений, указанных в таблице 1.

Интервал твердости, единица НВ

Допускаемое расхождение, единица НВ

Предел погрешности измерения D , %

наиболее различающихся результатов трех параллельных измерений твердости на торцах образца

средних значений твердости верхнего и нижнего торцов образца

результатов первичного и повторного определений твердости

Ссылка на основную публикацию
Adblock
detector