Где используется титан - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Где используется титан

Toyota Altezza ‘Racing edition › Бортжурнал › 📚Всё, что необходимо знать о металле ТИТАН (Ti)…

Основные сведения:
-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия:
-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана:
-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства:

Марки титана и сплавов:
-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св. В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С. Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки:
— Достоинства:
-малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
-высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые -сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
-необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности -тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
— Недостатки:
-высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
-активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, -составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
-трудности вовлечения в производство титановых отходов;
-плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
-высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
-плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
-большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Области применения:
-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Читайте также:  Часы из титана плюсы и минусы

-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!
-С уважением DrPavlov.

Области применения, основные характеристики и свойства титана и его сплавов

Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

Основные характеристики

Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

В чистом виде титан обладает следующими качествами и характеристиками:

    номинальная температура плавления — 1 660°С; при термическом воздействии +3 227°С закипает; предел прочности при растяжении – до 450 МПа; характеризуется небольшим показателем упругости – до 110,25 ГПа; по шкале НВ твердость составляет 103; предел текучести один из самых оптимальных среди металлов – до 380 Мпа; теплопроводность чистого титана без добавок – 16,791 Вт/м*С; минимальный коэффициент термического расширения; этот элемент является парамагнитом.

Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

Области применения

Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

Кроме этого, материал с добавками титана нашел применение в следующих областях:

    Химическая промышленность. Его стойкость практически ко всем агрессивным средам, кроме органических кислот, позволяет изготавливать сложное оборудование с хорошими показателями безремонтного срока службы. Производство транспортных средств. Причина – небольшая удельная масса и механическая прочность. Из него делают каркасы или несущие элементы конструкций. Медицина. Для особых целей применяется специальный сплав нитинол (титан и никель). Его отличительное свойство – память формы. Для уменьшения нагрузки пациентов и минимизации вероятности негативного воздействия на организм многие медицинские шины и подобные им устройства делают из титана. В промышленности металл применяется для изготовления корпусов и отдельных элементов оборудования. Ювелирные украшения из титана обладают уникальным внешним видом и качествами.

Особенности обработки

Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

При этом учитываются такие нюансы:

    Титановая стружка легко воспламеняется. Необходимо принудительное охлаждение поверхности детали и работа на минимальных скоростях. Гибка изделия выполняется только после предварительного разогрева поверхности. В противном случае велика вероятность появления трещин. Сварка. Обязательно соблюдение особых условий.

Титан – уникальный материал с хорошими эксплуатационными и техническими качествами. Но для его обработки следует знать специфику технологии, а главное – технику безопасности.

XI Международная студенческая научная конференция Студенческий научный форум – 2019

Титан и его применение в различных отраслях промышленности.

Титан (Ti) – химический элемент с порядковым номером 22. Принадлежит к четвертой группе периодической таблицы химических элементов, находится в четвёртом периоде. Атомная масса элемента 47,867 а.е.м. Простое вещество титан — лёгкий прочный металл серебристо-белого цвета, который плавится при температуре 3200 °C и закипает при температуре 3300 °C.

Титан – один из самых популярных элементов. Это название маркетологи дают многим продуктам, независимо от того, действительно ли в них содержится титан. Металл является символом прочности. Он абсолютно устойчив к коррозии и не вызывает аллергию. Однако, это дорогой металл, хотя его руды легкодоступны. Диоксид титана есть везде, например в титановых белилах – одной из самых распространенных белых красок. Диоксид титана добавляют и в краски других цветов для обеспечения матовости и непрозрачности покрытия [1].

Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном [2].

Основными титановыми рудами являются ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5). Наиболее богатыми по содержанию диоксида титана являются рутилсодержащие руды (93–96 %). Ильменитовые содержат 44–70 % диоксида титана, а концентраты из лейкоксеновых руд могут включать до 90 % TiO2. По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год [3].

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 % [4].

Цена титана достаточно высокая. Объясняется это тем, что его очень сложно извлекать из добытой руды. Если принять стоимость титана в концентрате за единицу, то стоимость готовой продукции – титанового листа в сотни раз больше. Объясняется это высоким сродством титана многим элементам и прочностью химических связей в его природных соединениях. Отсюда – сложности технологии. Магниетермический способ производства титана разработан в 1940 г. американским учёным У. Кролем [5].

Существует большое количество титановых сплавов. TITAN GRABE 1-4: технически чистый титан, не имеющий никаких примесей, высокого уровня устойчивости к коррозии, включая самые агрессивные среды применения. Эта характеристика дала возможность очень широкого применения чистого титана. Очень тоненькая плёночка оксида около 10 нм, незаметная обычному зрению, быстро покрывает сам материал при реакции с влагой или кислородом. Эдакое автовосстановление поврежденных участков.

TITAN GRABE 5: это самый широко применяемый сплав титана с алюминием (6 %), железом (максимум 0,25 %), ванадием (4 %) и кислородом (максимум 0,2 %). Дополнительные элементы увеличивают прочность сплава, не нарушая термодинамические характеристики и жесткость чистого титана, а вот в показателе устойчивости к коррозии он немного уступает чистому титану, но очень успешен в таких средах, как морская вода, растворы хлора, кислоты. По сути, Titan Grade 5 – это основа 70 % всего объёма выплавляемых титановых сплавов [6].

Титан является универсальным конструкционным материалом, нашедшим свое применение в авиастроении. Например, титановый корпус самолета при полете достигает скорости, намного большей, чем скорость звука. При этом нагревается до температуры свыше 300 °C и не плавится.

Целесообразно применение титана в таких отраслях промышленности, как пищевая, нефтяная, электротехническая. Например, говоря о пищевой промышленности невозможно не отметить, что титан очень стойкий в органических кислотах, в рассолах, маринадах, острых соусах, в пищевых соках, спиртах, во всевозможных приправах. Исследования коррозионной стойкости титановых сплавов продемонстрировали, что титан успешно может найти применение в консервном, чайном, эфиромасличном, сахарном, мясо-молочном, кондитерском, рыбо­перерабатывающем, хлебопекарном, пивоваренном, солевом и в других пищевых производствах. [7] В электротехнической промышленности металл применяется для бронирования кабелей, чему способствует его удельная прочность, высокое электрическое сопротивление и немагнитные свойства. Этот металл активно применяют в медицинской сфере при изготовлении медицинских инструментов, пластинок и винтов для крепления костей. Он может находиться в организме животного несколько месяцев, чему способствует образование на титановой пластине внутри организма мышечной ткани. Также титан широко используется в стоматологии.

Титан широко применяется в металлургии в роли легирующего элемента в производстве жаростойких и нержавеющих сталей. Титан добавляют в медь, алюминий, никель с целью повышения прочности последних. Двуокись титана применяется в производстве сварочных электродов, четыреххлористый титан используется в военном деле для организации дымовых завес. В радиотехнике и электротехнике применяется порошкообразный титан в роли поглотителя газов [8].

В производстве потребительской электроники титан также играет важную роль. Из TITAN GRABE 1 производят корпусы портативных компьютеров, мобильных телефонов, плазменных телевизоров и другого электронного оборудования. Из титана изготавливают часы и акустическое оборудование. Такая область применения металла обусловлена его легкостью, прочностью и привлекательным внешним видом готовых изделий.

Различные сплавы титана находят широкое применение в строительстве. В первую очередь – это сплав титана с цинком, который отличается высокими механическими показателями, устойчивостью к коррозии, высокой жесткостью и пластичностью. В составе сплава содержится до 0,2 % легирующих добавок, выполняющих функции модификаторов структуры. Благодаря алюминию и меди обеспечивается требуемая пластичность. Кроме того, использование меди позволяет повысить предельную прочность материала на растяжение, а сочетание химических элементов способствует снижению коэффициента расширения. Сплав применяется и для производства длинных лент и листов с хорошими эстетическими характеристиками и безопасностью для человека и окружающей среды. Кроме того, этот сплав хорош для изготовления нестандартных архитектурных элементов (куполов, фронтонов, шпилей), декоративных изделий (водостоков, отливов, кровельных коньков и т.д.). Сплав титана с цинком не имеет проблем в пайке, отличается большим сроком службы и способностью самовостанавливаться. Например, несущественные царапины через время устраняются сами по себе [9]. Однако, из-за высокой стоимости металл титан в строительстве применяют только для уникальных сооружений (например, памятник космонавтам у станции метро “ВДНХ” в Москве).

Еще одно соединение – нитрид титана, используется как жаропрочный материал, в частности, из него делают тигли для плавки металлов в бескислородной атмосфере. В металлургии это соединение встречается в виде относительно крупных (единицы и десятки микрон) неметаллических включений в сталях, легированных титаном [10]. Но в основном применяется в качестве износостойкого и декоративного покрытия. Изделия, покрытые им, по внешнему виду похожи на золото и могут иметь различные оттенки, в зависимости от соотношения металла и азота в соединении. Нитрид титана используется для создания износостойких покрытий металлорежущего инструмента. Нанесение покрытия из нитрида титана производится в специальных камерах термодиффузионным методом. При высокой температуре титан и азот реагируют вблизи поверхности покрываемого изделия и диффундируют в саму структуру металла [11].

Читайте также:  Титан это металл или неметалл

Чтобы улучшить свойства титановых сплавов, их легируют. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения. Элементы, повышающие температуру превращения, способствуют стабилизации α-твердого раствора и называются α-стабилизаторами, это – алюминий, кислород, азот, углерод. Элементы, понижающие температуру превращения, способствуют стабилизации β–твердого раствора и называются β–стабилизаторами, это – молибден, ванадий, хром, железо. Кроме α– и β–стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний. В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру α- или α+β.

Сплавы на основе титана можно подвергать всем видам термической, химико-термической и термомеханической обработки. Упрочнение титановых сплавов достигается легированием, наклепом, термическим воздействием. Часто титановые сплавы легируют алюминием, он увеличивает прочность и жаропрочность, уменьшает вредное влияние водорода, увеличивает термическую стабильность. Для повышения износостойкости титановых сплавов их подвергают цементации или азотированию [12].

Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю – свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины [13].

Титан является негорючим строительным материалом. Экологический аспект использования строительных материалов сегодня имеет важное значение. Ученые из Германии провели исследования и доказали, что металл титан и его сплавы безопасны для человека и природы, не вызывают аллергии и мало подвержены коррозии [14].

Все вышеперечисленное факты доказывают, что титан – прочный и лёгкий, универсальный металл. Его называют «металлом будущего». Титан является экологически безопасным и мало подверженным коррозии металлом, поэтому титан и его сплавы находят широкое применение в различных отраслях легкой и тяжелой промышленности.

1. Грей Т. Элементы: путеводитель по периодической таблице / Е. Грэй; пер. с англ. Г. Эрлиха. – М.: АСТ: CORPUS, 2014. – 240 с.

2.Открытие титана. URL : http :// www . chem . msu . su / rus / history / element / Ti . html (дата обращения 23.12.18).

3.Титановые руды. URL:http://www.petropavlovsk-io.ru/rus/useful-information/titan/2007/01/23/titan_264.html (дата обращения 26.11.18.)

4. Добыча титана. URL : https://dic.academic.ru/dic.nsf/ruwiki/494 (дата обращения 26.11.18)

5. Цена титана. URL : http://titanen.ru/interesno_o_titane (дата обращения 23.12.18).

6.Сплавы титана. URL : http :// metizmsk . ru / blog / titan – i – ego – primenenie – krepezh – iz – titana (дата обращения 13.12.18)

7.Применение титана в пищевой промышленности. URL :https://aviatitan.net/108-primenenie-titana-v-pischevoy-promyshlennosti.html (дата обращения 24.12.18)

8. Применение титана. URL :https://www.etalonstal.ru/statii/titan-i-ego-splavy-svoystva-i-sfera-primeneniya/(дата обращения 23.12.18).

9. Свойства сплава титана с цинком. URL:protown.ru/information/hide/5616.html ( датаобращения 26.11.18).

10. Нитрид титана. URL : https :// ru . wikipedia . org / wiki (дата обращения 13.12.18).

11.Применение нитрида титана как декоративного покрытия. URL : moyasvarka . ru / izdeliya / titan – svoistva – i – primenenie . html (дата обращения 26.11.18).

12. Легирование титановых сплавов. URL : http :// www . mtomd . info / archives /1683(дата обращения 23.12.18).

13.Применение титана в сверхглубоком бурении. URL:titanchik.ru/about/42-sfery-primeneniya-titana.html ( датаобращения 26.11.18).

14.Использование титана с экологической точки зрения. URL : www . metotech . ru / titan – opisanie . htm (дата обращения 13.12.18)

Небесный металл. Как работает единственный в России титановый завод

Эксперимент века

Рождением салдинского титана можно считать 1957 год. Тогда, в феврале, на заводе №95 (с 1982 года – Верхнесалдинское металлургическое производственное объединение) выплавили первый четырёхкилограммовый слиток. Кусок тусклого металла стал настоящим подарком для советского авиастроения и космонавтики.

Путь к первому слитку был непростым, но удачным. Салдинцы во главе со знаменитым металлургом Владиславом Тетюхиным, ставшим впоследствии руководителем комбината, экспериментировали с титановой губкой. Её делали (и делают до сих пор) на магниево-титановом комбинате АВИСМА (аббревиатура от «АВИаСтроительные МАтериалы») в Березниках (Пермский край) из ильменитового концентрата. Так или иначе, но дерзкий эксперимент 60-летней давности развился в огромный механизм, больше похожий на часы. В 2005 году две площадки, синхронно работающие на расстоянии сотен километров, объединились в одну структуру.

Интересная деталь: сырьё для ильменитового концентрата приходится импортировать. Этот факт удивителен ещё и потому, что основа для титановой губки – очень распространённый элемент, он есть везде. Например, несколько лет назад месторождение пытались разработать в Тамбовской области, но сырьё оказалось таким, что покупать за рубежом было выгоднее. До сих пор шутят, что на той инициативе успел заработать политические очки лишь кандидат в местные губернаторы. Впрочем, стоимость сырья в себестоимости готовой продукции невелика – не более 5%, поэтому возить его можно хоть из Австралии.

Титановый механизм

На часах 10:30 утра. По дороге из Екатеринбурга в Верхнюю Салду мы чуть-чуть задерживаемся и… рассинхронизируемся с заводом – не успеваем на загрузку губки и титановой стружки. Её уже спрессовали в большой электрод и по правилам электрометаллургии переплавили в «свечу» высотой больше трёх метров. Искрящийся и переливающийся всеми цветами радуги слиток мы успели увидеть до того, как его откуют, отштампуют, прокатают, обточат и рассверлят на станках.

Обработка заготовок похожа на пекарню, по которой нас водит начальник цеха Андрей Лазутин. Он рассказывает, что на титановой «кухне» биллеты на прессе вытягивают, раскатывают, нарезают и ягко снимают с них фаску. На наших глазах один из прутков режут на куски, нагревают и везут на очередной пресс, где под давлением создаются шайбы – «бублики». А то, что буквально выдирается из куска, на цеховом жаргоне так и называется – «выдра». Шайбу раскатывают на кольцераскатном стане, где важен диаметр. Чем он больше, тем выше потенциал производителя, его возможности. В данном случае раскатывают кольцо диаметром более 3 метров. А вообще, тут делают 1,5-метровые кольца для турбин известных марок самолётов. Заказы на детали подвески поступали и от команд «Формулы-1».

Пресс конкурентов

«Семидесятка» – так с любовью в Салде называют один из двух самых больших в мире гидравлических штамповочных прессов (второй такой установлен на Самарском заводе). Эту многотонную гордость уральского предприятия сделали на НКМЗ – Новокраматорском машиностроительном заводе – и установили в этой кузнице ещё в 1961 году.

35-метровый жёлто-зелёный гигант сильно напоминает живого трансформера, который с лёгким усилием в 75 000 тонн виртуозно и почти бесшумно штампует бесшовные детали для самолётов. Заводской любимчик за почти шесть десятков лет службы успел отличиться не раз: именно на нём в 1974 году была изготовлена переходная втулка стыковочного узла советско-американского проекта «Союз-Аполлон», а в 2003 году произведена самая большая и тяжёлая штамповка в мире – балка шасси для Airbus A380 весом почти 3,5 тонны и длиной около 5 метров.

На наших глазах выдавливается очередной тракбим – деталь для стойки шасси нового самолёта. Рядом лежат уже отштампованные будущая балка крепления фюзеляжа и другие силовые – их тут называют «ответственными» – детали лайнеров. По аналогии с кольцераскатным станом, где важна способность дать больший диаметр, прессу важно давление – от него зависит качество, однородность металла заготовки. В этом уральцы пока первые, но, говорят, не так давно появился 85 000-тонный соперник в Китае. Во всяком случае, о нём пишет китайская пресса, правда, без подробностей. Пока же защитой от потенциального конкурента может стать отсутствие у китайцев сертификатов, без которых отправлять титан в небо – никак.

Политическая страховка

Продукция высокого уровня передела – мантра, которую наизусть знали министры «росселевского призыва». Со времён первого постсоветского руководителя Свердловской области промышленная политика региона настраивалась на производство не просто заготовок, а полноценных деталей. Ведь если – условно – штамповка для стойки шасси стоит как две «Тойоты Королла», то готовая деталь стоит – тоже условно – как восемь.

На выполнение сверхзадачи работает цех механической обработки, где станки рассверливают титановые штамповки сразу в пяти координатных плоскостях, превращая их в черновые детали для самолётов. «Заготовка на станках протачивается, просверливается, а затем подвергается термообработке. Пять координат – это вдоль, поперек, вверх и по двум диагоналям», – объясняет начальник цеха Сергей Таланцев. Впрочем, и тут видна глубина европейской и американской кооперации: один станок – из США, ещё одна линия итальянского производства монтируется на помощь чешской.

Планы по чистовой отделке могут реализоваться уже к 2020 году – на площадке совместного с «Боинг» предприятия Ural Boeing Manufacturing –2. Его открыли в сентябре 2018 года на территории особой экономической зоны «Титановая долина».

В завершение остается добавить, что работает и платит налоги товаропроизводящее подразделение корпорации ВСМПО-АВИСМА на Урале, в городе с населением 42 тысячи, из которых каждый второй дееспособный житель работает на ВСМПО и справедливо считает себя титанщиком.

Получение и применение титана

Физико-химические и механические свойства губчатого и пластичного титана. Взаимодействие хлора и других галогенов с титаном. Процесс производства титана из ильменитовых руд магниетермическим способом. Направления применения титана в промышленности.

РубрикаПроизводство и технологии
Видконтрольная работа
Языкрусский
Дата добавления18.02.2015
Размер файла22,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования

«Тульский государственный университет »

Контрольно-курсовая работа по ТКМ

Выполнил ст. гр. 620811 Манжос А.В.

Проверил Захаров С.К.

Физико-химические и механические свойства губчатого и пластичного титана

Свойства пластичного титана

Процесс производства титана из ильменитовых руд магниетермическим способом

Задание 1
Физико-химические и механические свойства губчатого и пластичного титана

Плотность губчатого титана составляет 800-3500 кг/м и также зависит от способа комплектации партии.

Теплопроводность губки очень низка (в 13 раз меньше, чем у пластичного титана) и составляет 1,26 Вт/(м*С). Плохая теплопроводность губки значительно затрудняет ее обработку резанием.

Свойства пластичного титана

1670С, температура кипения 3260С, теплота плавления 437 Дж/кг, удельная теплоемкость (в интервале 0-100С) 678Дж/(кг*С), теплопроводность (в интервале 0-200С) 213,6 Вт/(м*С), температурный коэффициент линейного расширения (в интервале 290-570С) 8,2 10°С, удельное электросопротивление (при 20С) 42 10 Ом м, магнитная проницаемость 1,00005 Г/м (титан парамагнитен, т.е. он способствует усилению окружающего его внешнего магнитного поля). Твердость по Бринеллю НВ 90-130. Титан является хорошим геттером, т.е. обладает способностью активно поглощать газы, в особенности кислород, азот и водород. Примеси кислорода и азота снижают пластические свойства титана, а водород делает титан хрупким.

Хлор и другие галогены взаимодействуют с титаном при низких температурах (100-200С) с образованием лёгколетучих галогенидов титана. Титан обладает высокой коррозионной стойкостью во многих средах. В холодной и кипящей воде металл не корродирует. Он практически стоек против действия азотной кислоты любой концентрации на холоде и при нагревании вследствие образования защитной окисной пленки. В разбавленной серной кислоте (до 5% H2SO4) при комнатной температуре титан стоек, в других условиях H2SO4 разрушает титан. Подобное действие на титан оказывает соляная кислота, которая начинает реагировать с ним при концентрации HCl более 10% и температура выше 25С. В растворах щелочей (концентрации до 20%) на холоде и при нагревании титан стоек. Титан не корродирует в среде расплавов некоторых соединений. Высокая коррозионная стойкость титана обусловливает широкое применение его в химико-металлургических производствах.

Процесс производства титана из ильменитовых руд магниетермическим способом

750 °С реторту магния в нее подают тетрахлорид титана.

Восстановление титана магнием (TiCl4 + 2Mg = Ti + 2MgCl2) идет с выделением тепла, поэтому электронагрев печи отключают и реторту обдувают воздухом, поддерживая температуру в пределах 800–900°С; ее регулируют также скоростью подачи тетрахлорида титана. За один цикл восстановления длительностью 30 – 50 часов получают от 1 до 4 тонн титана в виде губки (твердые частицы титана спекаются в пористую массу – губку). Жидкий MgCl2 из реторты периодически выпускают.

Титановая губка впитывает много MgCl2 и магния, поэтому после окончания цикла восстановления проводят вакуумную отгонку примесей. Реторту после нагрева до 1000 °С и создания в ней вакуума выдерживают в течение 35-50 часов; за это время примеси испаряются. Иногда отгонку примесей из губки проводят после ее извлечения из реторты.

Применение титана

Эти уникальные свойства титана и его сплавов привлекли внимание конструкторов самолетов, ракет, подводных лодок, различных химических аппаратов и на длительный период определили главное применение проката из титана в этих отраслях.

Из титана и его сплавов в СССР серийно изготавливали теплообменные и колонные аппараты, детали электролизеров, фильтры, емкости, насосы, вентиляторы и газоходы, арматуру и трубопроводы. Известно применение титана в прикладной электрохимии для изготовления гальванических ванн, анодов и других изделий. На Березниковском титано-магниевом комбинате изготовлена и работает 120-метровая титановая труба массой 200 т. Подобная труба из железобетона имела бы массу 4500 т. Медицинские инструменты, изготовленные из титановых сплавов, на 20-30% легче инструментов из нержавеющей стали, обладают высокой коррозионной стойкостью, более долговечны и удобны в работе. Титан хорошо вживается в организм человека, и этим пользуются врачи-травматологи.

Титан используют как декоративный материал в архитектуре и монументальной скульптуре. Им облицован обелиск в ознаменование запуска первого искусственного спутника Земли, сооружений в Москве около ВДНХ, монумент “Штык” в Белоруссии, памятник к 100-летию организации Международного союза электросвязи в Женеве. Из титана изготовлен вымпел, доставленный на Луну советской космической ракетой. Перечисление областей применения титана можно было бы продолжить, но в этом нет необходимости. По мере удешевления титана без сомнения будут появляться все новые и новые сферы потребления этого замечательного металла. титан руда магниетермический проивзодство

Размещено на Allbest.ru

Подобные документы

Процесс получения титана из руды. Свойства титана и область его применения. Несовершенства кристаллического строения реальных металлов, как это отражается на их свойствах. Термическая обработка металлов и сплавов – основной упрочняющий вид обработки.

контрольная работа [2,3 M], добавлен 19.01.2011

Устройство работы доменной печи. Технология производства титана. Свойства титана и область его применения. Углеродистые конструкционные стали обыкновенного качества. Назначение и область применения станков строгальной группы. Лакокрасочные материалы.

контрольная работа [202,6 K], добавлен 14.03.2014

Содержание титана в земной коре. Состав титановых концентратов, полученных из титановых руд, находящихся на территории Казахстана. Современная технология получения титанового шлака и металлического титана. Особенности очистки четырёххлористого титана.

реферат [4,8 M], добавлен 11.03.2015

Титан и его распространенность в земной коре. История происхождения титана и его нахождение в природе. Сплавы на основе титана. Влияние легирующих элементов на температуру полиморфного превращения титана. Классификация титана и его основных сплавов.

реферат [46,4 K], добавлен 29.09.2011

Физико-химические свойства титана и технология его производства. Карботермическая и алюмотермическая выплавка ферротитана. Достоинства и недостатки способов ведения плавки. Титан высокой чистоты как конструкционный материал. Применение жидкого алюминия.

лекция [306,6 K], добавлен 24.11.2013

Общая характеристика и механические свойства титана как металла. Оценка главных преимуществ и недостатков титановых сплавов, сферы их практического применения и значение в кораблестроении. Батискаф “Алвин”: история проектирования и построения, проблемы.

реферат [161,2 K], добавлен 19.05.2015

Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.

презентация [433,4 K], добавлен 01.12.2013

Методы порошковой металлургии. Повышение износостойкости покрытий, полученных методом высокоскоростного воздушно-топливного напыления, из самофлюсующихся сплавов на никелевой основе путём введения в состав исходных порошков добавок диборида титана.

статья [2,3 M], добавлен 18.10.2013

Сфера применения карбидов титана и хрома. Состав и технологические характеристики исходных продуктов и композиционных порошков на их основе. Скорость окисления образцов. Микроструктура плазменного покрытия после изотермической выдержки в течение 28 часов.

статья [211,0 K], добавлен 05.08.2013

Обзор технологий и патентной литературы по восстановлению тетрахлорида титана магнием. Металлургический, конструктивный, тепловой, электрический расчет аппарата восстановления. Контроль и автоматизация технологических процессов, безопасность проекта.

дипломная работа [596,3 K], добавлен 31.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Титан или сталь?

Очень популярный вопрос, который мучает многих: «Какие клапана купить: стальные или титановые». В этой статье мы постараемся помочь вам определиться с выбором.

В чем же отличия титановых и стальных клапанов, и почему нет победителя в общем зачете?

Масса клапана.

Первое отличие, которое бросается в глаза – это масса клапана. Титановый клапан при одинаковых размерах значительно легче свое стального брата. Пружина быстрее закроет клапан, масса которого меньше, по этому, чем меньше вес клапана, тем выше можно поднять планку максимальных оборотов с меньшим риском догнать клапан поршнем. При этом снижается нагрузка на ГРМ в целом, это дает некоторую прибавку к мощности за счет небольшого увеличения КПД. Например: практически на всех современных кроссовых мотоциклах и мотоциклах для кольцевых гонок используется титановые клапана.

Стальные клапана при том же размере имеют больший вес, поэтому с ними используются более жесткие пружины. При недостаточной жесткости пружин растет вероятность удара клапанов поршнем при работе двигателя на высоких оборотах. Жесткость пружин и больший вес клапанов создают повышенную нагрузку на ГРМ. Даже на маленьких двигателях кроссовых мотоциклов с объемом 125куб.см. со стальными клапанами используются достаточно жесткие, и даже двойные пружины.

Износостойкость.

Титановые сплавы сильно уступают стали, когда речь идет об износостойкости. Плохие антифрикционные свойства титана обусловлены налипанием титана на многие материалы и его взаимодействием с азотом и водородом при высоких температурах, из-за которых верхний слой становится хрупким и выкрашивается в процессе эксплуатации.

Для улучшения антифрикционных свойств, повышения износостойкости и защиты от внешней среды титановые клапана покрывают защитными покрытиями различных типов. Толщина таких покрытий, в зависимости от типа, варьируется от нескольких тысячных до сотых миллиметра. Это делает невозможным притирку клапана к седлу с целью герметизации камеры сгорания, т.к. во время притирки неизбежно будет повреждено защитное покрытие, и клапан быстро «провалится» в седло. Поэтому при установке титановых клапанов предъявляются повышенные требования к форме, чистоте фасок на седлах и их соосности относительно направляющей втулки.

Износостойкость и антифрикционные свойства стали на порядок выше, чем у титана, но значительно ниже, чем у защитных покрытий, которыми покрыт титановый клапан. При этом износостойкость фаски стального клапана сохраняется по всей толщине тарелки, а фаска титанового клапана сохраняет свои свойства и параметры ровно до тех пор, пока держится защитное покрытие.

Теплопроводность, коэффициент расширения и тепловой зазор

Теплопроводность и стойкость к высоким температурам у титановых сплавов ниже, чем у жаропрочных сталей. Охлаждение тарелки клапана играет еще более важную роль при использовании титановых клапанов. Именно по этому с титановыми клапанами рекомендуется использовать бронзовые седла клапанов, которые лучше отводят тепло от горячей тарелки клапана.

Коэффициент расширения титана намного меньше чем у стали. При использовании титановых клапанов допускается меньший тепловой зазор между направляющей втулкой и клапаном, чем при использовании стальных клапанов. Это положительно сказывается на точности посадки клапана в седло, что увеличивает ресурс пары седло-клапан.

Стоимость клапана и ремонта

В среднем титановые клапана дороже стальных. Во первых, потому что титан гораздо дороже в производстве чем сталь. Во вторых при производстве титановых клапанов необходимы дополнительные этапы производства (нанесение покрытий). И наконец- маркетинг.

Хотя порой можно встретить стальные клапана стоимость которых соизмерима с титановыми. Чаще такая картина наблюдается с оригинальными запчастями, где основной процент от стоимости занимает маркетинг.

В случае повреждения фаски, восстановление стального клапана обойдется в 3-4 раза дешевле, чем титанового.

Ресурс

Очень много слухов про капризность и не большой ресурс титановых клапанов. Также часто можно услышать про то, что титановые клапана часто “обрывает”. На самом деле обрывает и стальные и титановые клапана одинаково часто, но одинаково предсказуемо на кривых седлах. Об этом явлении более подробно мы рассказывали в статье “Срок службы клапанов”.

“Обрыв” титанового клапана Yamaha Phazer 500 и “обрыв” стального клапана KTM EXC 450

Из-за тонкого защитного покрытия титановые клапана действительно более капризны, чем стальные, особенно при небрежном отношении и неквалифицированном обслуживании. Но, по опыту, и стальные и титановые клапана при должном внимании и обслуживании служат одинаково долго.

За время работы нам приходилось видеть «убитые» клапана при небольших пробегах, как на стальных, так и на титановых комплектах.

Итоги и рекомендации.

В большинстве случаев мы рекомендуем своим клиентам использовать оригинальные клапана и пружины, особенно если техника используется по прямому назначению.

Стальные клапана имеет смысл менять на титановые в случаях если:

– двигатель регулярно эксплуатируется на повышенных оборотах

-планируется модернизация двигателя с целью увеличения мощности

-производится регулярное качественное обслуживание техники

-происходит смена назначения техники (из эндуро в кросс, например)

Титановые клапана имеет смысл менять на стальные если:

-двигатель не эксплуатируется на повышенных оборотах

-сложности с обслуживанием (проведение самостоятельного обслуживания и ремонта)

-нет возможности обрабатывать седла (есть возможность притереть клапана)

-титановый аналог слишком дорогой

Всегда используйте только те пружины, которые предназначены для данного типа клапанов!

При использовании новых клапанов настоятельно рекомендуем обрабатывать седла (формировать фаски) на хорошем оборудовании. Это особенно важно при использовании титановых клапанов. Притирка титановых клапанов не допускается.

Надеемся, что данные рекомендации помогут вам определится с выбором клапанов. Вы всегда можете оставить заявку на обратный звонок или позвонить мастеру и проконсультироваться.

Ссылка на основную публикацию
Adblock
detector