Анодирование титана в черный цвет - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Анодирование титана в черный цвет

Чернение титана.

Нашел вот что:
“Титан приобретает “радикально черный цвет” (С) после суточного пребывания в 10% перекиси водорода”
А где ее можно купить и не является ли вообще она запрещенным веществом? А то получится как с тем ученым. Я уже лучше без титана, чем в тюрягу.

10% перекись поспрашивать у знакомых медсестер, в больничках им поставляют, они сами вроде разводят. В свободной продаже есть 3% в любой аптеке, попробуйте ей на 3 суток замочить титан.

10% перекись поспрашивать у знакомых медсестер, в больничках им поставляют, они сами вроде разводят

легче гидроперит купить в любой аптеке и замутить самому.

интересно, правда зачернится или нет

интереснее, на сколько стойким будет покрытие. ) я больше доверяю оксидированию. ) но интересно! отпишитесь, если кто попробует.

Спасибо за рецепт, попробую после НГ.

10% перекись достаточно агрессивная вещь, и достать её очень тяжело, у медсестёр точно нет

а в гидроперите ещё и мочевина интересно что получиться

А если,кто найдет десяти процентную перекись,поделитесь,я так же хочу пэксперементировать.

Перекись водорода абсолютно свободно продается. В канистрах под названием “пергидроль” для обеззараживания бассейнов есть 37%-на и 60-%-ная. Можно и чистую купить, если захотеть.

Поищите знакомых таксидермистов, они используют перикись промышленно и покупают ее неразведенной

А еще разбавитель красок в парикмахерских это 9-12% перекись.

для обеззараживания бассейнов есть 37%-на и 60-%-ная

Завтра на работе попробую. У нас на заводе 50 %-тная перикись вроде бы есть.
Сразу отпишусь.

Послежу, очень интеоесно.

Бросил пруток 16мм в банку,утром посмотрю

Отмечусь чтоб не потерять.

Тоже интересно, что получится

с утра как прочитал закинул кусок в трехпроцентную, завтра расскажу

А зачем вообще титан анодировать в чёрный цвет? В голубой-синий, “золото” , фиолетовый, зелёный. Это понятно. Он хорошо анодируется, особенно ВТ20. Но в чёрный цвет зачем? Чтоб похож был на воронёную железку)) Раствор перекиси с долей 50%, можно приобрести в компаниях , которые торгует пром. химией.

Черный не достичь анодированием,вот и изыскиваются разные способы. По мне в сочетании с карбоном и травлением клинка (дамаск,ламинат) идеальный вариант. Вопрос стойкости покрытия.

Это сказка про перекись и титан.12 часов,изменений цвета нет

Р-р 30%

montanavlad
10% перекись поспрашивать у знакомых медсестер, в больничках им поставляют, они сами вроде разводят. В свободной продаже есть 3% в любой аптеке, попробуйте ей на 3 суток замочить титан.

PASHIK79
интереснее, на сколько стойким будет покрытие. ) я больше доверяю оксидированию. ) но интересно! отпишитесь, если кто попробует.

а про оксидирование подробней можно?

ОЧЕНЬ удивлен. Думал, знают.

ОЧЕНЬ удивлен. Думал, знают.

Нужно собирать базу блэкабельных сплавов)

Немного про химию, которую я не знаю 😊 Но может кого-то натолкнет на правильные мысли. http://www.chem21.info/article/586603/

cbtray
“Титан приобретает “радикально черный цвет” (С) после суточного пребывания в 10% перекиси водорода”

Свежо предание, но верится с трудом (C)
титан (если с него не удалить оксидную пленку)
не будет реагировать с Н2О2

cbtray
на 24 часа положите, сплав другой попробуйте. даже 3% работают.
в ориджинл теме были отзывы, не у каждого “срослось”. Нужно собирать базу блэкабельных сплавов)

ссылку на источник
(а то в интернете – полно всяких ЛЖЕдумок)

в трехпроцентнойт вт-20 пролежал сутки изменений никаких вообще

suhai123
в трехпроцентнойт вт-20 пролежал сутки изменений никаких вообще

Чёрной керамикой покрывал в одном институте.
В зависимости от марки титана покрытие от серого-пятнами до совершенно черного

cbtray
да. у меня лишь за несколько суток вышло

За 360 ч испытания почти полностью разлагаются 30 и 60% растворы, при этом 60% раствор превращается в прозрачный гель.
Занятно! У меня он зеленый вышел. Может, титан весь раствор пожрал, надо снова поместить. Только на титане после мытья по краю затемнения какой-то налет светлый. Не оттирается ногтем.

ЮЗОН
титан (если с него не удалить оксидную пленку)
не будет реагировать с Н2О2

Оксидирование титана

Титан и его сплавы отличаются низкой износостойкостью, что затрудняет их применение для деталей, работающих в условиях фрикционного износа. В резьбовых соединениях наблюдается задирание и наволакивание металла. Титан недостаточно устойчив в некоторых химических средах (растворы серной, соляной, фосфорной кислот). Для устранения этих недостатков рекомендуется применять оксидные покрытия. Тонкие оксидные пленки улучшают фрикционные свойства, повышают химическую стойкость металла, изменяют окраску его поверхности. Пленки повышенной толщины обладают хорошей адсорбционной способностью.

Оксидирование проводится анодной обработкой деталей в растворах серной, щавелевой, фосфорной, хромовой кислот или их смесей, иногда с добавками других компонентов. Оксидные пленки черного цвета, повышающие стойкость титана в 40 %-ной H2SO4, могут быть получены анодной обработкой его в 18 %-ном растворе H2SO4 по следующему режиму: температура электролита 80 °С, плотность тока 0,5 А/дм 2 , продолжительность обработки до 8 ч. Толщина получаемых при этом пленок около 2,5 мкм. Оксидные пленки толщиной около 1 мкм получаются при электролизе в течение 2 ч при 100 °С и плотности тока 1 А/дм .

Фрикционные свойства титановых деталей улучшаются, если на их поверхность нанесены оксидные пленки толщиной 0,2-0,3 мкм. Такие покрытия формируются в 5 %-ном растворе щавелевой кислоты. Электролиз ведут при 18-25 °С в течение 60 мин. Анодную плотность тока в начале процесса устанавливают I – 1,5 А/дм 2 и поддерживают постоянной в течение 5-10 мин, напряжение на ванне за это время повышается до 100-120 В. В дальнейшем плотность тока понижается до 0,2-0,3 А/дм 2 . При эксплуатации в отсутствии смазки лучшие результаты показывают оксидные пленки, полученные при указанных условиях, за исключением температуры, которая должна быть понижена до 6-8 °С. Использование коллоидно-графитовой смазки еще больше повышает износостойкость оксидированной поверхности.

Для получения оксидных пленок толщиной 20-40 мкм предложен электролит, содержащий (г/л) 350-400 H2SO4 и 60-65 HCl. Анодную обработку ведут при 40-50 °С; плотность тока ступенчато повышают через каждые 2-3 мин на 0,5 А/дм 2 до напряжения пробоя, после которого устанавливается плотность тока 2-4 А/дм 2 , при которой продолжают электролиз до получения пленки требуемой толщины.

Цвет оксидных пленок зависит от состава титанового сплава и условий его анодирований. При обработке сплава ВТ-5 в 15 %-ном растворе H2SO4 с повышением температуры и напряжения на ванне окраска формируемых пленок изменяется от светло-коричневой до фиолетовой. Увеличение продолжительности электролиза также сказывается на окраске пленок. Меньшая зависимость окраски оксидных пленок от температуры электролита была выявлена для процесса оксидирования титана в растворе, содержащем (г/л) 140 СrОз и 4 Н33 Цвет пленки в данном случае изменялся с продолжительностью электролиза при постоянном напряжении или с величиной приложенного напряжения. Так, при обработке титана ВТ1-0 в течение 15 мин и повышении напряжения от 5 до 50 В цвет пленки сначала был бледно-коричневый, затем синевато-фиолетовый и потом золотисто-желтый. При постоянном напряжении 50 В и увеличении продолжительности электролиза от 1 до 15 мин цвет пленки изменялся от светло-голубого до золотисто-желтого.

Оксидирование в хромово-борном электролите указанного состава ведут при 95-100 °С, напряжении 50-60 В в течение 2 ч. На титане ВТ-1 формируются оксидные пленки темно-коричневого цвета, на сплаве ОТ4-1 – черного цвета.

Для получения на титане и его сплавах равномерно окрашенной пленки, отличающейся стойкостью против коррозии, предложено вести анодирование в разбавленном растворе гидроксида натрия при анодной плотности тока не выше 2,5 А/дм .

Электрохимическое оксидирование резьбовых деталей из титановых сплавов можно проводить в импульсном режиме 2 , когда постоянный ток подается на ванну импульсами, чередующимися с перерывами тока. В зависимости от соотношения продолжительности периодов подачи и перерыва тока изменяются толщина и свойства формирующихся пленок. Для обработки сплавов ВТЗ-1, ВТ20, ВТ5-Л применяется электролит, содержащий 200-210 мл/л серной кислоты (плотность 1,84) и 10-20 мл/л фосфорной кислоты (плотность 1,7) при анодной плотности тока в импульсе 5-10 А/дм 2 , длительности импульса 0,2 с, длительности перерыва тока 0,8 с, частоте 60 импульсов в секунду.

Читайте также:  Напыление нитрид титана на металл

Напряжение на ванне в процессе электролиза повышается от 70-80 В до 150-160 В. В течение 30-40 мин на титановых сплавах формируются пленки, толщиной 5-6 мкм.

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.11.12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Оксидирование титана. Часть 2.

Анодное оксидирование титана (анодирование).

Анодирование это процесс, в котором непосредственно на поверхности металлов образуется покрытие в виде окислов при нагревании, воздействии химических веществ (см. «Оксидирование титана.Часть 1.») или с помощью электричества.

Наиболее распространенным методом формирования оксидного слоя на поверхности титана является процесс оксидирования титана под воздействием электрического тока, при котором титановая деталь помещается в токопроводящий раствор и подключается к аноду. В качестве катода используют пластины из свинца или нержавеющей стали.

Анодное оксидирование титана проводят с целью:

  • дополнительной защиты от коррозии;
  • повышения адсорбционной способности;
  • повышения износостойкости;
  • уменьшения задиров;
  • улучшения декоративности поверхности.

На производстве оксидирование титана проводится анодной обработкой деталей в растворах серной, щавелевой, фосфорной, хромовой кислот или их смесей, иногда с добавками других компонентов.

Составы растворов для повышения коррозионной стойкости:

Раствор №1:

Серная кислота 50 – 60 г/л

Температура 15 – 25°С, плотность тока 1,0 – 1,5 А/дм2.

Время обработки 50 – 60 мин.

При анодировании титана первые 2 – 6 минут поддерживают заданную плотность тока, напряжение на ванне возрастает до 90 – 110 В, после чего плотность тока падает до 0,2 А/дм2. Дальнейший процесс анодного оксидирования титана проводят без регулировки тока. Процесс ведут при перемешивании электролита. Катоды применяют свинцовые или из стали Х18Н9Т. Пленки получаются бесцветные.

Раствор №2:

Серная кислота 18%-ный раствор

Температура 80ºС, плотность тока 0,5 А/дм2.

Время обработки до 8 часов.

Пленка получается черного цвета. Толщина пленки около 2,5 мкм.

Кроме того, для защиты от коррозии применяют химически стойкие лакокрасочные покрытия, нанесение которых требует применения толстых оксидных пленок (20 – 40 мкм) с повышенными адсорбционными свойствами.

Повышение адсорбционной способности достигается за счет увеличения толщины оксидной пленки до 20 – 40 мкм. Для этого используют электролит из смеси кислот.

Состав электролита для получения толстых пленок, г/л:

Серная кислота H2SO4 350 – 400

Соляная кислота HCl 60 – 65

Электрохимическое оксидирование титана проводят при 40 – 50ºС; плотность тока ступенчато повышают через каждые 2 – 3 мин на 0,5 А/дм2 до напряжения пробоя, после которого устанавливается плотность тока 2 – 4 А/дм2, при которой продолжают электролиз до получения пленки требуемой толщины.

Фрикционные свойства титановых деталей улучшаются, если на их поверхность нанесены оксидные пленки толщиной 0,2 – 0,3 мкм.

Состав электролита для получения тонких пленок:

5%-ый раствор щавелевой кислоты.

Электролиз ведут при 18 – 25°С в течение 60 мин. Анодную плотность тока в начале процесса оксидирования титана устанавливают 1 – 1,5 А/дм2 и поддерживают постоянной в течение 5 – 10 мин, напряжение на ванне за это время повышается до 100 – 120 В. В дальнейшем плотность тока понижается до 0,2 – 0,3 А/дм2. Использование коллоидно-графитовой смазки еще больше повышает износостойкость оксидированной поверхности.

Декоративное анодирование титана и его сплавов позволяет получить различные интерференционно – окрашенные окисные пленки (коричнево-желтые, синие, голубые, различные оттенки желтого цвета, включая розовый, малиновый, а также различны оттенки зеленого цвета). Решающее влияние на цветность пленки оказывает напряжение при анодировании титана и состав сплава (см.«Покрытие титана. Часть 1.»).

Декоративное анодирование титана.

При обработке сплава ВТ-5 в 15%-ном растворе H2SO4 с повышением температуры и напряжения на ванне окраска формируемых пленок изменяется от светло-коричневой до фиолетовой. Увеличение продолжительности электролиза также сказывается на окраске пленок (см. «Пассивация металлов»).

Меньшая зависимость окраски оксидных пленок от температуры наблюдается при введении в состав электролита хромового ангидрида.

Состав электролита для стабильного окрашивания титана, г/л:

Хромовый ангидрид CrO3 140

Цвет пленки в данном случае изменяется только с продолжительностью электролиза при постоянном напряжении или с величиной приложенного напряжения.

Так, при обработке титана ВТ1-0 в течение 15 мин и повышении напряжения от 5 до 50 В цвет пленки сначала бывает бледно-коричневый, затем синевато-фиолетовый и потом золотисто-желтый. При постоянном напряжении 50 В и увеличении продолжительности электролиза от 1 до 15 мин цвет пленки изменяется от светло-голубого до золотисто-желтого.

Анодированные изделия могут служить много лет без изменения своих декоративных свойств. Анодная защита от коррозии настолько эффективна, что может защитить детали от самых агрессивных воздействий.

Технология и способы анодирования титана

Анодирование титана в домашних условиях. Процесс анодного оксидирования поверхностей титановых сплавов. Преимущества и недостатки процедуры. Способы осуществления оксидного анодирования самостоятельно.

Анодированием металла называют электрохимическую обработку, в результате которой на поверхности объекта обработки образуется оксидная пленка. Барьерное покрытие прекрасно предохраняет изделие из титана от окислов и ржавчин, а также имеет декоративный внешний вид. Процедуру анодирования металлических сплавов можно осуществить самостоятельно, используя подручные средства.

Цель анодирования титана

В процессе анодирования изделие из титана покрывается оксидной пленкой, которая образуется из самого металла в результате электрохимической реакции.

Анодирование изделий из титана также называют анодным оксидированием. Если сравнивать анодирование в условиях промышленного производства с применением специального оборудования и самостоятельное покрытие оксидной пленкой, то, конечно, второй способ несколько уступает качеством результата. Но тем не менее металл, обработанный в домашних условиях, приобретает ряд неоспоримых преимуществ:

  1. Оксидная пленка выполняет защитные функции, не позволяя влаге проникнуть к металлической основе изделия. Барьер предотвращает образование коррозии, что продлевает сроки эксплуатации предметов быта из титанового сплава.
  2. Анодирование титана укрепляет поверхность изделия и делает его более устойчивым к различным видам внешних повреждений.
  3. Металлические изделия после анодного оксидирования частично или полностью теряют способность проводить электрический ток.
  4. Посуда с оксидным покрытием выдерживает длительный нагрев, обладает антипригарными свойствами и не выделяет токсичных веществ во время приготовлении пищи.
  5. Если изделие из титана прошло оксидную обработку, это не является препятствием к другим видам обработки посредством гальванизации.
  6. Регуляция силы тока и составляющих электролитической жидкости позволяют сделать оксидное покрытие не только более прочным, но и красивым. Применение красителей позволит придать изделию привлекательный внешний вид.

Анодирование титана в условиях производства позволяет провести более глубокую обработку деталей, однако даже в домашних условиях можно добиться повышения износостойкости металлических изделий.

Способы и методы

Холодный метод

Согласно уравнению оптимальная температура, при которой необходимо осуществлять процессы анодирования по данной технологии, – 0 °C. Однако допустимы колебания от –10 до +10 °C. Именно при таких температурных нормах происходит образование прочной и целостной оксидной пленки на поверхности детали из титанового сплава. Холодный метод позволяет в домашних условиях провести процедуру твердого анодного оксидирования.

При правильной регулировке силы тока можно осуществить напыление с помощью гальваники, используя в качестве материала золото, медь или хром. Такое барьерное покрытие защитит изделия из титана от окислов и ржавчин, что продлевает срок его службы до нескольких десятков лет.

Главный недостаток такой технологии анодирования – невозможность дальнейшей покраски объекта обработки.

Теплый метод

Технология предусматривает использование органических красителей, благодаря которым металлу можно придать удивительно красивый декоративный вид. Подойдут как готовые красящие составы, так и подручные красители из домашней аптечки: йод, зеленка, марганцовка, йодинол и прочее.

К сожалению, такая технология не рассчитана на проведение твердого анодирования. Барьерные свойства оксидной пленки очень слабые, как и защита от механических повреждений. Однако при дальнейшем окрашивании оксидное покрытие проявляет высокие адгезивные способности. Эмалевые краски прекрасно сцепляются с таким покрытием, и в свою очередь обеспечивают изделию из титана надежную защиту от коррозии.

Анодирование титана в домашних условиях

В домашних условиях анодирование осуществляется по следующей схеме:

  1. В контейнер, который не обладает электропроводимостью (стекло или пластмасса), помещают электролит.
  2. Собирается электрическая цепь, где источником электрического тока с постоянным напряжением может выступать блок питания (аккумулятор).
  3. Изделие из титана, которое нужно обработать, подключается зажимом к положительному заряду, после чего помещается в резервуар с электролитическим раствором.
  4. К отрицательному заряду крепятся пластины из нержавеющей стали из свинца, после чего также погружаются в электролит.
Читайте также:  Титановые сплавы марки состав

Если деталей, подключенных к «-», несколько, их необходимо расположить на одинаковом расстоянии от титанового сплава.

  1. Цепь активируется с помощью источника электрического тока, после чего деталь из титана начинает выделять кислород, способствующий образованию оксидного покрытия.

Не стоит забывать о предварительной подготовке изделия из титанового сплава к процедуре анодирования. Детали необходимо очистить от загрязнений и элементов ржавчины, после чего отполировать и промыть чистой водой. Титановый сплав должен несколько часов провести в щелочном растворе, после чего поверхность изделия тщательно обезжиривается.

Только после вышеперечисленных подготовительных мер титан можно погружать в электролит и приступать к анодированию.

Если у вас есть опыт проведения процедуры анодирования титана в домашних условиях, вы можете поделиться им в комментариях.

Сообщества › Кулибин Club › Блог › Анодирование в “домашних” условиях.

Все работы по анодированию проводятся с использованием защитных средств, респиратор, очки и защитные перчатки, ибо работаем пусть и с разбавленной, но с кислотой и щелочью! В идеале в проветриваемом помещении. Соблюдаем ТБ!

Первоначально готовим саму деталь, механическая полировка, чем “чище” поверхность те более глянцевая будет деталь, можно применять и химическую полировку, но этот процесс еще более вредный для здоровья, нежели сама анодировка, поэтому выводим деталь на полировальном круге и другими средствами.

Для подвеса детали в рабочей ванне необходимо использовать алюминиевые токоподводы, никаких посторонних металлов, в идеале на детале можно оставлять конструктивный выступ, для подключения, но при его спиливании будет не покрытое место, я воспользовался конструктивными резбовыми отверстиями, на куске алюминиевого провода нарезал резьбу и просто вкрутил в эти отверстия, получается хороший, плотный контакт.

Толщину токоподвода надо подбирать с учётом силы тока, необходимого для анодирования, иначе проводник начнёт греться в месте контакта, а как следствие на нём пойдёт бурная реакция и его начнёт растравливать и уменьшать его сечение, и так в геометрической прогрессии, до полного растворения :)) (в одной из попыток так и произошло из-за плохого контакта)

Перед погружением в электролит деталь необходимо обезжирить, способов море, от Пемолюкса и прочих порошков, до средства КРОТ, намой взгляд КРОТ самое близкое к нужному, это слабый раствор щёлочи NaOH с добавлением ПАВ.
Я обезжиривал в чистом растворе NaOH+вода, концентрацию точно не замерял, но чем насыщенее раствор, тем быстрее будет процесс просто. Посути раствор растворяет тонкий слой оксида алюминия, так сказать “естественное” анодирование, окисление поверхностного слоя на воздухе, так что сильно с травлением не стоит затягивать, иначе начнёт растравливать саму деталь ))

В процессе травления идёт бурное выделение газов (кажется водорода) работать только в защитной маске и остерегаться попадания раствора на кожу, ибо ожог не хуже чем от кислоты будет.

После травления к детале уже прикасаться нельзя, иначе от прикосновений остаются жирные следы и как следствие неравномерное покрытие, пятна и прочие радости, после промывки от раствора щелочи под проточной водой клал деталь в чашку с водой, в идеале дистиллированной, что бы на неё ничего не попало, пока готовимся к следующему этапу.

Что касатся рабочей ванны можно использовать эмалированную (без сколов) или пластиковую посудину, но тогда дно и стенки придётся “выкладывать” из свинца или иного стойкого к электролиту материала, эти пластины выполняют роль катода.
Так же необходимо позаботиться об охлаждении рабочей ванны, в процессе хим реакции электролит будет нагреваться.
Я использовал 2 титановые гофты (квадратная банка) получается вся площадь гофты является катодом, что весьма положительно влияет на равномерность нанесения, ток более равномерный по пповерхности детали, ну и титану кислота не помеха.
Так же была организованная Водяная баня, только в обратную сторону, для охлаждения, вода проточная со скважины.

В качестве электролита взят Электролит для аккумуляторных батарей, разбавленный в пропорции 1:1 дистиллированной водой. При приготовлении раствора электролита соблюдаем ТБ и льём не разбавленный электролит в дистиллированную воду (Соблюдая правило Кислоту в Воду, дабы избежать закипания)

После смешивания электролит нагреется, остужаем его градусов до 15-20, и впринципи поддерживаем такую температуру, от 10 до 25 градусов, это будет “Тёплое анодирование” которое позволит в дальнейшем окрасить деталь красителем для ткани и им подобными.
Если температура будет ниже, близкая к 0, то мы получим “холодное” анодирование, слой будет плотнее и прочнее, но красителем его уже не окрасиш, поры слишком плотные будут, возможно получиться окрасить Химическим способом, но я пока такой не осваивал, поэтому в домашних условиях проще добиться Теплого анодирования.
Пока деталь плавает в воде, подключаем токоподвод к источнику тока.
В качестве источника тока лучше использовать блоки со стабилизацией по току, что бы не бегать и не следить за током, чем больше площадь детали, тем более мощный придётся искать блок.
Площадь данной детали, примерно, составила 490см2, плотность тока должна быть 15-20мА на см2 итого получаем тока 7,3-9,7А при напряжении 12в, хотя в процессе роста оксидной плёнки напряжение может подрости, я брал источник с параметрами 20А и 30в максимальные значения.
При Холодном анодировании для поддержания заданного тока может потребоваться напряжение гораздо больше чем 12в, ибо чем плотнее слой, тем больше его электрическое сопротивление.

На следующих этапах соблюдаем главное правило: “Погружение в раствор и доставание из раствора детали ТОЛЬКО при включенном источнике тока!”
Иначе кислота начнёт разъедать деталь и загрязнять раствор…
Погружаем деталь в раствор, при включенном источнике тока, достаточно самого минимального значения, просто что бы между анодом и катодом было напряжение! Опять же не забываем про маску, очки и перчатки!

Зачем размещать деталь под углом, при строго горизонтальном расположении шайбы было замечено, что торцы покрываются более плотным слоем чем плоскости, плюс если имеются не сквозные отверстия, деталь необходимо размещать так, чтобы а)электролит полностью их заполнил и б)чтобы из них мог выходить газ скапливающийся в процессе, иначе может образоваться газовый пузырь, который вытиснит электролит, и соответсвенно в этом месте деталь не покроется оксидным слоем.
Ну и по возможности деталь должна быть равноудалена от катода, тоесть стенок ванны.

Вокруг детали начнётся активное выделение пузырьков газа, кислорода, сам по себе он не особо вреден, а вот аэрозоль кислоты, образующаяся при лопании пузырьков, когда они доходят до поверхности, весьма вредно вдыхать, поэтому накрываем всё это хозяйство.

Как только накрыли крышкой, выставляем на блоке питания необходимый ток и засекаем минут 40-60

Пока ждём начинаем готовить раствор красителя, в качестве красителя можно использовать анилиновы красители разбавленные в воде или краску для заправки картриджей для струйников.
Я использовал вчастности Colouring для устройств Canon/Epson/HP/Lexmark продаётся в ДНС по 200-300р за 100мл, бывает Голубой (Cyan), Пурпурный (даёт цвет от красного до фиолетового) (Magenta), Желтый и Чёрный, так же есть Светло-голубой и Светло-пурпурный.
С голубым у меня получилось, желтый и чёрный не пробовал, а вот Magenta не захотел красить пробник почему-то.

Я разбодяживал 2 пузырька примерно на 3л воды, далее подогреваем этот раствор до 60градусов.
Все работы лучше проводить в резиновых перчатках, отмывается эта дрянь с рук очень плохо!

Периодически посматриваем как идёт процесс, раствор становится мутным от обилия пузырьков, но больших пузирей не должно быть!

При анодировании крупных деталей (ну или большого количества мелких 😉 ) возникает проблемка, за которой необходимо следить.
На одной фото обратил внимание на красный налёт на стенках ванны, это медь из сплава Д16Т выходит в раствор и осаждатся на стенках, когда деталь большая, слой становится толстым и отпадает от стенок и начинает бултыхаться какое то время в растворе, пока не растворится и снова не выпадит на стенках, НО за время своего бултыхания эти частицы попадая на поверхность детали устраивают местные прогары, что визуально видно как чёрные полоски как от электроразрядов…
Поэтому необходимо периодически сливать электролит, промывать ванну в воде и счищать медь со стенок.

Читайте также:  Как варить титан аргоном

После окончания процесса Анодирования, не отключая источник тока достаём деталь из раствора.

Далее следует чательная промывка детали в проточной воде, дабы смыть остатки окислительных процессов и вымыть электролит из пор, так же как и ранее ДЕТАЛЬ НЕЛЬЗЯ ТРОГАТЬ РУКАМИ максимум в резиновых перчатках или кистью аккуратно промываем.
Один раз попробовал промывку в слабом растворе щелочи, для нитролизации кислоты, но тут надо очень быстро и аккуратно и снова под проточную воду.
Я некоторое время выдерживал деталь в проточной воде, пока отцеплял от блока питания и возился с краской.

Дальше чистую деталь помещаем в горячий краситель, степень окраски зависит от концентрации раствора, времени выдержки в растворе, и оксидного слоя.
Поэтому при попытке окрасить несколько Больших деталей очень сложно попасть в цвет, ибо слишком много факторов влияющих на это, в этом плане только чёрный цвет самый простой вариант, держим в растворе минут 15, и он точно будет чёрный (точнее коричневато-чёрный)
После того, как получили нужный нам цвет, опускаем деталь в кипяток и варим её так минут 30, воду тоже лучше использовать дистиллированную.
Кипятим деталь для того, чтобы закрыть поры и краска осталась внутри, при проварке часть краски перейдёт в воду и деталь может немного осветлиться, это опять же камень в огород повторяемости цвета на нескольких одинаковых деталях…
В итоге после долгих мучений и экспрементах на “кошках” должно получиться что то подобное 🙂

Всем мира, счастья и с наступающим НГ, и не забываем При работах с кислотами шелочами обязательно использование защитных стредств!

Анодирование стали, алюминия

Под анодированием металла понимается процедура наращивания оксидной пленки при помощи анодного окисления. Данная процедура может проводиться практически для любых металлов. Но чаще всего речь идет о стали, алюминии и цветных металлах (в основном титане и тантале). В свою очередь анодирование меди и железа оказывается весьма затруднительно. Связано это с тем, что обозначенные металлы образуют не один устойчивый оксид, а два. Это негативно сказывается на адгезии и существенно увеличивает риск растрескивания оксидной пленки.

Операция анодирования и ее специфика

Здесь видно 2 ванны с промывочной жидкостью (синего цвета) и жидкостью для анодирования (зеленная жидкость)

Анодирование металла как процедура не представляет собой особенной сложности и при желании может быть произведена собственными силами. Выполнение данной операции подразумевает выполнение следующих этапов работы:

Этап 1. Подготовка поверхности металла

Прежде чем приступать к анодному окислению, поверхность металла следует тщательно подготовить: отполировать, отшлифовать. Обезжиривание поверхности производится при помощи органических растворителей (например, бензина, ацетона или спирта). Затем поверхность обрабатывается любой щелочью. В домашних условиях может быть использован обыкновенный мыльный раствор. Черные металлы отлично обезжириваются при помощи раствора едкого калия или натра, который предварительно нагревается до 80 градусов. Что касается алюминия, для него лучше подойдет 10% раствор фосфорнокислотного натрия.

Этап 2. Протравливание (декапирование) поверхности металла

Протравливание металлической поверхности производится с целью удаления окислов, которые препятствуют качественному нанесению нового покрытия. Для проведения процедуры применяется серная кислота (в соотношении 80 миллилитров кислоты на 100 миллилитров вводы с добавлением 2 граммов хромпика.

Этап 3. Анодирование металла

Процесс анодного окисления металла осуществляется в электролитном растворе под воздействием постоянного тока. Важно чтобы емкость, в которой производится анодирование, не пропускала ток. В качестве электролита чаще всего используется 20% раствор серной кислоты.

Сам процесс анодного окисления происходит следующим образом. К аноду при помощи специальной подвески производится крепление изделия из металла, а к катоду – свинцовой пластины (для изделий сложной формы потребуется несколько свинцовых пластин). Расстояние до пластины при этом должно быть не более девяти сантиметров. Процедура проводится при температуре 20 градусов. При этом плотность электрического тока должна варьироваться от 2 до 3 А/кв. дм. Напряжение требуется от 12 до 15 В. Весь процесс занимает порядка одного часа.

Устройства и инструменты

Прежде чем приступать к анодному окислению, следует подготовить следующее оборудование и инструменты, которые потребуются для выполнения работы:

  • фольга из алюминия;
  • перчатки резиновые;
  • пластиковый контейнер для размещения металлического изделия;
  • батареи 9В (от 1 до 8 шт.);
  • изолированный кабель (около полутора метров);
  • электролитный раствор;
  • ложка;
  • органический растворитель;
  • стакан из пластика;
  • клещи;
  • устройство, предназначенное для зачистки кабелей.

Установки для анодирования металлов и их конструктивные особенности

Любая крупная установка для анодного окисления – это достаточно непростой комплекс, включающий в себя электрическое, химическое и механическое оборудование. При его выборе следует учитывать ряд значимых моментов:

  1. Самые высокие эксплуатационные затраты приходятся на процедуры разгрузки, а также загрузки. И именно это делает анодное окисление весьма трудоемкой процедурой.
  2. Максимальную пропускную способность установка для анодирования определяет мощность выпрямител постоянного тока, при помощи которого и производится анодное окисление. Чаще всего используется выпрямитель с мощностью 25 Ватт. Хорошо, если установка имеет бесступенчатую регулировку напряжения под нагрузкой от нуля до максимального показателя, а также автоматическую функцию возвращения напряжения по окончании цикла в ноль. Качественное анодное окисление предполагает наличие оксидной пленки на поверхности металла. В самом начале процесса анодирования пленка относительно тонкая и имеет маленькое сопротивление. Соответственно, для того, чтобы поддерживать плотность тока достаточно небольшого напряжения. В процессе наращивания толщины оксидной пленки ее сопротивление возрастает, соответственно ток падает. Для того, чтобы на протяжении всей процедуры поддерживалась одинаковая плотность тока, напряжение нужно постепенно и плавно увеличивать. И именно здесь бесступенчатая регулировка напряжения установки для анодирования окажется весьма к месту.
  3. Контакты между пластинами и шинами предполагают точность конструкции. Поэтому желательно по концам ванн анодирования установить гибкие контактные площадки (например, из меди)

Анодирование различных типов металла

Особенности анодирования меди и ее сплавов

Чаще всего анодирование меди и ее сплавов осуществляется химическим или электрохимическим способами. В результате поверхность материала в большинстве случаев приобретает цветное покрытия.

Для получения пленки из меди применяется кислая или цианистая жидкость. Медные сплавы, в состав которых входят легирующие металлы повергаются анодному окислению намного сложней.

Особенности анодирования серебра

Анодное окисление серебра позволяет придать изначально белому металлу черный, фиолетовый либо синий оттенок без изменения структуры и качественных характеристик обрабатываемого материала. Обработку серебряных изделий специалисты рекомендуют производить при помощи серной печени. При проведении анодирования серебро начинает менять цвет примерно через полчаса. После того, как изделие обретет необходимый цвет, его необходимо достать из жидкости и тщательно промыть сначала горячей, потом теплой и, наконец, холодной водой.

Особенности анодирования титана

Анодирование титана представляет собой обязательную процедуру, основное значение которой заключается в повышении показателя износоустойчивости данного металла. Наличие оксидной пленки придает изделию химическую прочность и изменяет цвет поверхности покрытия. Использоваться для анодного окисления титана могут хромовая, щавелевая или любая другая кислота.

Зависимость цвета оксидной пленки титана от напряжения тока при оксидировании.

Особенности анодирования алюминия

Анодное окисление алюминия требуется, независимо от того, что этот металл может отлично выглядеть и после экструзивной обработки. Связано это с тем, что алюминий в большой степени подвержен коррозии. К тому же он под воздействием целого ряда негативных внешних факторов легко разрушаться.

Для чего нужно анодирование металлов

Сфера применения анодного окисления достаточно разнообразна. Металлы, подвергшиеся анодному окислению, приобретают:

  • отличные защитные свойства;
  • однородную поверхность;
  • отсутствие полос и царапин;
  • высокие декоративные характеристики

В последнее время достаточно высокой востребованностью пользуется именно декоративное анодирование металло, которое может производиться как вместе с механической обработкой, так и без таковой.

Ниже представленно коротенькое видео операции анодирования алюминия.

Ссылка на основную публикацию
Adblock
detector