Перспективные виды сварки - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Перспективные виды сварки

Перспективные виды сварки

Электронно-лучевая сварка (ЭЛС)

Сущность процесса сварки электронным лучом состоит в использовании кинетической энергии электронов, быстро движущихся в глубоком вакууме. При бомбардировке электронами поверхности металла их кинетическая энергия превращается в теплоту, обеспечивающую расплавление кромок свариваемых деталей.

1) Возможность получения узкой и глубокой зоны проплавления вследствие высокой концентрации энергии в электронном луче, что обеспечивает возможность сварки любых материалов больших толщин.

2) Малые поводки (деформации) конструкции после сварки вследствие сравнительно небольшого количества подводимого тепла (в 10–15 раз меньше, чем при ДЭС) и быстрого охлаждения металла шва.

3) Возможность получения узлов с проплавленными швами, когда один из элементов конструкции недоступен для непосредственного воздействия дуги.

1) Необходимость трудоемкой подгонки деталей под сварку (зазор между свариваемыми кромками не должен превышать 0,15 мм, непараллельность торцов при толщине металла до 20 мм в пределах 0,5 мм, чистота обработки кромок – Rz = 2,5 мкм).

2) Сравнительная сложность применяемого оборудования (сварочных камер и установок больших габаритов).

Сущность процесса диффузионной сварки (ДС) заключается в образовании неразъемного соединения деталей в твердом состоянии за счет взаимной диффузии атомов через контактную поверхность в результате действия давления и нагрева в течение определенного времени. Соединение образуется в результате развития физического контакта и активизации контактных поверхностей вследствие их пластической деформации и взаимодействия, ведущего к возникновению химических связей между атомами (рис. 1.19).

Определяющими процесс ДС факторами являются температура, давление и время. Сочетание этих факторов обеспечивает качественное соединение. Рекомендуется проводить сварку титановых сплавов при температуре на 15–30°С ниже температуры полиморфного превращения (ниже 900–1000°С). Давление при сварке 0,4–2,0 МПа, время сварки – 0,5–3 часа.

Рис. 1.19. Схема установки диффузионной сварки:

1 – верхняя плита; 2 – вакуумная камера; 3 – нижняя плита;

4 – нагреватель; 5 – стол; 6 – вакуумная система; 7 – изделие

Важное значение для получения качественного соединения имеют качество подготовки поверхностей и окружающая среда. Диффузионная сварка может быть проведена в вакууме, в среде инертных газов, в соляных ваннах (предпочтительнее в вакууме).

· высокое качество соединения, механические свойства материала в зоне сварки близки к свойствам основного материала;

· малое коробление конструкции вследствие отсутствия остаточных напряжений в сварных швах;

· исключение вакуумного отжига конструкции после сварки;

· улучшение условий труда сварщиков (отсутствие газовыделения, пыли и пр.).

Представляет особый интерес интенсивно осваиваемый рядом аэрокосмических фирм комплексный процесс пневмотермической формовки – диффузионной сварки титановых конструкций (ПТФ/ДС). В основу комплексного процесса ПТФ/ДС положена идентичность условий и режимов сверхпластической формовки и диффузионной сварки (сопоставимые температурные, силовые и временные параметры, необходимость применения вакуума либо нейтральных газов).

По 1-й схеме (рис. 1.20, а) в оснастку укладывают предварительно подготовленные элементы. Производится формовка подачей газа. На завершающем этапе создается давление сварки.

Способ может быть с успехом применен для компенсации утонения листа в наиболее деформируемых участках или соединения листа с фитингами, кронштейнами и другими конструктивными элементами.

По 2-й схеме (рис. 1.20, б) на лист наносят локально (в местах деформации) антисварочное покрытие. Собирают два листа. Создают давление сварки Рф, сваривая листы в местах отсутствия покрытия. далее подают аргон между листами и формуют нижний лист по профилю инструмента.

Способ используют для изготовления интегрально-жестких конструкций – панелей, в виде листов, подкрепленных элементами жесткости (пример: панель со шпангоутами и стрингерами).

Рис. 1.20. Основные схемы реализации комплексного процесса ПТФ/ДС

По 3-й схеме (рис. 1.20, в) на лист наносят с двух сторон антисварочное покрытие. Собирают пакет из трех листов. Создают давление сварки. Средний лист сваривается с листами обшивки. При подаче газа между листами формуется заполнитель трехслойной конструкции. Форма заполнителя определяется рисунком наносимого антисварочного покрытия.

Данным способом могут быть получены заполнители различного вида: гофровые, ячеистые, вафельные либо комбинированные. Форма изделия не обязательно плоская (пример: многослойные панели). В оснастку могут быть уложены дополнительные элементы.

Перспективные виды сварки, передовой производственный опыт

Один из основных путей совершенствования технологии сварки связан с переходом на компьютерное регулирование сварочного процесса. Там, где раньше для сварки приходилось использовать самые разнообразные методы и аппараты, сегодня достаточно одного аппарата, оснащенного периферийными дополнительными устройствами и компьютерным управлением — электронным регулированием показателей электрического импульса и характера электрической дуги (Waveform Control Technology). Испанская фирма Lincoln Electric Europa является одним из инициаторов этого направления. Ею разработаны восемь методов и 80 вариантов их применения, включающие весь комплекс от программ по управлению дугой до механических устройств, роботизации и аппаратов для полуавтоматической сварки. Метод сварки пульсирующей дугой MIG/MAG-Puls предусматривает работу в трехступенчатом режиме, включающем этап быстрого увеличения тока до предельных значений, этап кратковременного выдерживания сильного тока с образованием капли на электроде и глубоким прогревом зоны шва и заключительный третий этап сброса тока до базового значения, необходимого для поддержания дуги. Дополнительно в процессе варьируется частота тока: увеличение частоты служит для сужения конуса электрической дуги, уменьшение частоты — для расширения конуса дуги. Заключительный оплавляющий импульс заостряет конец электрода и улучшает условия запуска дуги для следующего процесса. Метод пульсирующей дуги служит для сварки стали, алюминия, нержавеющей стали, никелевых сплавов. Особенно выгодно его применять для тонколистовых материалов.

Несколько иная последовательность импульсов положена в основу метода Puls-on-puls, представляющего собой комбинацию высоких и низких импульсов тока. Высокоэнергетический импульс очищает и плавит материал, низкоэнергетический импульс остужает расплав и ведет к образованию плотного волнистого шва. Регулируемый поток тепла дает возможность сваривать даже тонкие алюминиевые листы и получать аккуратный качественный шов при средней квалификации сварщика. Метод быстрой дуги RapidArc представляет собой процесс с более сложным регулированием импульса. Он состоит из четырех этапов. На первом этапе обеспечивается рост тока и напряжения до предельных значений с образованием капли расплава, на втором происходит резкий сброс тока и частичное снижение напряжения с развитием плазменного эффекта, на третьем — резкий сброс напряжения при минимальном токе с обрывом дуги и стеканием капли в шов, на четвертом — подача нового импульса тока и напряжения с восстановлением дуги после паузы. При этом поток плазмы сдвигает расплав, отделяет электрод от расплава и охлаждает его.

Метод RapidArc позволяет при той же скорости подачи электрода увеличить на 30% скорость сварки, уменьшить разбрызгивание и обгорание металла. Это достигается за счет снижения напряжения в дуге и уменьшения теплопередачи благодаря обрыву дуги. Метод RapidArc особенно перспективен для автоматической и полуавтоматической сварки материалов толщиной 1,5-4 мм. Например, при сварке нелегированной стали методом RapidArc при токе 300 А, напряжении 28 В и скорости подачи сварочной проволоки 10 м/мин. была достигнута скорость сварки 62 см/мин. при теплозатратах 0,82 кДж/мм, в то время как в обычном MAG-процессе с постоянным напряжением и скоростью подачи проволоки 13 м/мин. скорость сварки была 44 см/мин., а теплозатраты — 1,13 кДж/мм.

Совершенствование сварочной техники идет, в том числе, и по пути создания компактных и легких сварочных аппаратов. Финская фирма Kemрpi показала на выставке оригинальные переносные сварочные аппараты MinarcMig типа MIG/MAG, предназначенные для механизированной дуговой сварки листового и профильного металла в среде инертных и активных защитных газов.

Стандартный режим работы, горелка и механизм подачи у них рассчитаны на сварочную проволоку диаметром 0,6-1 мм, оптимально -диаметром 0,8 мм. Номинальный сварочный ток — 180 А, продолжительность нагрузки — 35%. Аппарат можно использовать для сварки алюминиевой сварочной проволокой или массивной проволокой из нержавеющей стали в защитной атмосфере из чистой углекислоты или из ее смеси с 82% аргона. Возможна также работа открытой дугой с порошковыми самозащищаемыми проволоками. MinarcMig поставляется полностью укомплектованным (включая кабель и горелку). Вес комплекта — 9,8 кг. Аппарат полностью готов к запуску, нужно только вставить в него бобину со сварочной проволокой и подсоединить к газовому баллону соединительный шланг с редуктором.

Для автоматической подачи проволоки фирмой разработан оригинальный механизм, вес которого меньше на 35%, энергетическая эффективность выше на 50%, а динамический резонанс быстрее на 200% по сравнению с ранее применявшимися устройствами. MinarcMig отличается исключительной простотой управления. Работать с ним может не только профессионал, но и начинающий сварщик и даже любитель. На приборном щитке аппарата установлен дисплей и кнопка настройки. Примененная в аппарате система настройки позволяет заранее установить исходные показатели, от которых зависят параметры сварочного процесса: диаметр проволоки, вид защитного газа, скорость сварки. В процессе сварки аппарат анализирует дугу и выбирает оптимальное соотношение между напряжением, силой тока и скоростью подачи проволоки.

Актуальным направлением развития сварочного производства в Республике Беларусь следует считать структурную и технологическую перестройку, направленную на снижение потребления основных и сварочных материалов, облегчение конструкций за счет перехода на высокопрочный металлопрокат, уменьшение металлоемкости сварных соединений, развитие прогрессивных способов сварки, снижение ресурсоемкости, трудоемкости и энергоемкости сварных изделий. Структурная перестройка возможна при условии эффективной переподготовки и сертификации рабочих и специалистов-сварщиков и внедрения систем управления качеством сварочных производств на уровне европейских и мировых стандартов.

3.2.3. Специальные способы сварки

В ряде случаев они эффективно используются вместо сварки плавлением и контактных способов, несмотря на небольшой темп роста и объём применения. Это относится к таким способам, как сварка трением, ЭЛС, сварка взрывом, диффузионная сварка, ультразвуковая и т.д., а также к различным видам пайки.

Читайте также:  Как выбрать сварку инверторного типа

Электронно-лучевая сварка перспективна для сварки активных и тугоплавких металлов. К началу 1975 года в мире работали 1300–1400 установок, в 1980 г. – 6000 штук, к 2000 году их число достигло 10000 штук. Электронный луч обладает большой мощностью, изменяющейся в широком диапазоне, поэтому ЭЛС можно использовать и в электронике, и приборостроении, а также при изготовлении крупногабаритных изделий. Она широко используется в машиностроении, тракторном машиностроении – блок шестерён, детали коробки передач и т.д.

Сварка трением. В 1980 году мировой парк машин для сварки трением составлял 4500 штук. Она относится к одному из способов, который в последние годы интенсивно развивается во всех странах мира. Она применяется для сварки стыковых и Т-образных соединений, в которых круглые детали привариваются к плоским поверхностям (рис. 3.3). При этом необходимо, чтобы хотя бы одна деталь была телом вращения.

Рис. 3.3. Виды соединений при сварке трением

Способ производителен, обеспечивает высокое качество сварных соединений, хорошо поддаётся механизации и автоматизации; не требуется газовая и другая защита зоны сварки.

Диффузионной сваркой можно сваривать разнородные металлы и сплавы с резко отличающимися теплофизическими характеристиками, а также соединять малопластичные и тугоплавкие материалы.

К недостаткам можно отнести необходимость тщательной подготовки и подгонки соединяемых поверхностей, значительные затраты для сварки в вакууме.

Применяется диффузионная сварка в электронной промышленности для получения вакуум-плотных швов, термостойких и вибростойких соединений, можно приваривать, например, фольгу к массивной детали.

Ультразвуковая сварка применяется для сварки как металлов, так и пластмасс. Легко соединяются пластичные металлы (медь, алюминий, серебро и т.д.) между собой и в сочетании с малопластичными металлами (рис. 3.4). Можно выполнять сварку металлов со стеклом, керамикой. Особенностью является то, что не требует тщательной подготовки свариваемых поверхностей.

Для сварки применяются колебательные системы различных типов.

Рис. 3.4. Ультразвуковая сварка

Основной тип соединений – нахлёсточный. Сварка может выполняться точечными и непрерывными швами. Диапазон толщин – от микрон до 1 мм. Толщина второй детали может не ограничиваться.

Холодная сварка обеспечивается за счёт совместных пластических деформаций соединяемых деталей без внешнего нагрева, при этом температура, при которой происходит сварка, может быть сколь угодно низкой и даже отрицательной. Сваривают пластичные металлы, определяемые критерием свариваемости. Схемы сварки: точечная, шовная, стыковая. Точечной сваркой можно сваривать, например, листовой алюминий толщиной 0,1–10 мм; стыковой сваркой – провода площадью до 650 мм 2 .

Сварка пластмасс. Процесс сварки происходит в пределах температурного интервала сварки (ТИС) пластмасс Способы сварки: контактно-тепловая листов и труб, сварка газовым теплоносителем с присадочным и без присадочного материала, сварка ТВЧ, УЗС, трением, сварка лучом лазера и т.д.

Наплавка. Применяют для нанесения на поверхность изделия слоя материала с заданным составом и свойствами. Используется как при изготовлении новых деталей (например, клапанов двигателей внутреннего сгорания), так и при восстановлении изношенных деталей (например, колёсных пар железнодорожного подвижного состава). Для наплавки используют способы дуговой сварки. Широко применяются способы наплавки под флюсом, порошковыми проволоками и лентами. В настоящее время применяются различные специальные способы наплавки – вибродуговая, плазменная, газопорошковая, с индукционным нагревом, электрошлаковая, электроконтактная и др.

Особенности и характеристики видов сварки

Жизнь современного человека тесно связана с вещами, изготовленными с применением сварочных технологий. Речь идет не только о соединении металла, но и прочих материалов, которые можно соединить на молекулярном уровне. В статье будут рассмотрены основные виды сварки.

Понятие процесса

Сварка – это технология создания неразъемного соединения между двумя поверхностями, путем интенсивного температурного воздействия.

Физические признаки

Металлы отличаются высокой температурой плавления. Без дополнительных факторов площадь контактные части свариваемых изделий не будут взаимодействовать друг с другом. Для изменения агрегатного состояния металла требуется повысить его температуру. По достижению определенного уровня создаются условия, при которых появляется возможность выполнить стыковку деталей с получением крепкой межатомной связи между поверхностями.

Технологичность – главное свойство сварных работ

Применяемые типы сварки зависят от характеристик рабочих элементов, а также производственных условий. Наиболее употребительными являются следующие технологии:

  • Дуговая.
  • Плазменная.
  • Газовая.
  • Сварка давлением.
  • Стыковая.
  • Холодная.

Важность свойств

В процессе соединения заготовок необходимо обеспечить надежную защиту зоны температурного воздействия от агрессивного влияния кислорода в атмосфере. В противном случае в области обработки будут активно развиваться коррозионные процессы, ухудшающие качество конструкции. Основные способы предотвращения контакта расплава с воздухом:

Классификация

Классификацию сварки металлов осуществляют исходя из характера воздействия на плоскость:

  1. Термический класс. Характеризуется бесконтактным способом воздействия на поверхность – электрической дугой или пламенем газа.
  2. Термомеханический класс. Данный вид сварочных работ сочетает в себе бесконтактное воздействие, для достижения нужной температуры, а также механического давления для выполнения соединения.
  3. Механический класс. Заданные тепловые параметры получают исключительно за счет механического воздействия на соединяемые изделия.

Ниже будут рассмотрены виды сварок и их краткая характеристика, для каждого класса.

Термический класс

Сварочная дуга

Сварочная дуга – это источник тепловой энергии для расплава металла. Представляет собой электрический разряд, возникающий при разрыве цепи. В качестве питающего механизма применяются устройства, работающие на постоянном или переменном токе.

Электродуговая

Электродуговая технология – наиболее распространенный способ соединения металлических изделий. Своей популярностью обязан относительной простоте применяемого оборудования и низкой себестоимости выполнения работ. Известно несколько видов дуговой сварки.

Ручная дуговая

Работы выполняются электродами с флюсовым покрытием и аппарата для сварки. Метод получил свое название благодаря функциям, которые осуществляются сварщиком:

  • Выбор направления движения стержня и его скорость.
  • Длина дуги;

Под действием высокой температуры флюс расплавляется. Одни компоненты попадают в зону расплава, улучшая качественные характеристик, другие остаются на поверхности, образуя защитную пленку.

Неплавящимся электродом

В качестве электродного материала используются тугоплавкие элементы: вольфрам или графит. Температура плавления базовой поверхности ниже, чем у электрода. Это обстоятельство увеличивает срок эксплуатации стержней. Допустимо использование присадочных металлов. Ввиду отсутствия флюса, работы ведутся в среде инертных газов.

Механизированная плавящимся электродом в среде защитного газа

Данный вид работ характеризуется применением особого присадочного материала – электродной проволоки, состав который зависит от свойств рабочей поверхности. Для подачи материала в зону сварки используют подающие механизмы. Они могут быть как одним из узлов агрегата, так и автономным оборудованием. Проволока не имеет защитного покрытия, поэтому соединение выполняют под защитой газа. При его отсутствии используют особый тип присадки – порошковую проволоку, которая содержит флюс для защиты шва. Для работы применяются аппараты, функционирующие в полуавтоматическом режиме.

Под флюсом

В этом случае на зону соединения вносят флюсовый состав, при плавлении которого возникает газовый пузырь, служащий барьером для вредных атмосферных факторов. Подчиняется требованиям ГОСТа 8713-89. На серийных производствах имеются установки, выполняющие сварку под флюсом в автоматическом режиме.

Электрошлаковая

Особенностью метода является система подачи тепловой энергии: ток проходит через флюс, нагревая его. Затем происходит плавление присадочного материала и заготовки. Способ незаменим при вертикальных соединениях с углублением, относительно основной плоскости.

Орбитальная

Метод промышленного стыкования поверхностей с круглым сечением, таких как трубы. Существует два способа реализации неразъемной связи. В первом случае заготовки вращаются вокруг своей оси. Под действие силы трения достигается рабочая температура. Во втором случае изделия зафиксированы, а вокруг них вращается подвижная головка аппарата для дуговой сварки. В этом случае используется электродная проволока.

Газопламенная

Технология характеризуется использованием тепловой энергии, образующейся при сгорании горючих газов и их смесей. В зависимости от массовой доли кислорода, определяется характер пламени. Оно может быть трех типов:

  • окислительное;
  • нейтральное;
  • восстановительное.

Плазменная

Рабочим инструментом является плазмотрон, генерирующий высокотемпературную плазменную дугу. В качестве механизма регулировки струи используют электромагнитные силы, увеличивая скорость ионов до необходимой величины. Помимо сварки, плазму используют наплавки, резки и напыления.

Электронно-лучевая

Высокотехнологичный метод, отличающийся принципом нагрева поверхности – для повышения температуры используется электронная пушка, которая создает поток электронов. Соединение элементов выполняют в условиях вакуумных камер.

Лазерная

На зону соединения воздействуют тонким лазерным лучом, который характеризуется точностью обработки и малым влиянием на зону вокруг шва. Это помогает избежать деформаций при работе с тонколистовыми материалами. Специалисты рекомендуют варить конструкции в среде защитных газов.

Стыковой метод соединения пластмасс оплавлением

Исходя из названия, для оплавления пластиковых изделий используется нагревательный элемент с покрытием из тефлона.

С закладными нагревателями

Еще один метод соединения полимеров. Нагрев осуществляется элементами сопротивления, которые устанавливают на соединительную муфту. После монтажа заготовки подается электрический ток, расплавляющий пластик.

Термомеханический класс сварки

Кузнечная

В качестве рабочего инструмента использовался кузнечный молот, деформирующий заготовки. Является самым старым способом выполнения соединения. В настоящее время практически не используется.

Контактная

Наиболее популярный способ данного класса. Рабочий цикл включает в себя два этапа. Первый – плавление поверхности до пластичного состояния. Второй – давление на нагретые элементы, которое может осуществляться как вручную, так и с помощью различных приводных механизмов. Подвидами контактной технологии являются.

Точечная

Популярная технология, которая может быть реализована в домашних условиях. Изделие помещают между двумя стержнями, выполняющими роль электродов. На них подается кратковременный импульсный заряд, нагревающий плоскость. Затем заготовка сжимается электродами, образуя межатомное соединение.

Стыковая

Основное отличие технологии заключается в ширине воздействия на поверхность. Соединение выполняется по всей плоскости касания. Существует два способа создания соединения:

  • сопротивлением;
  • непрерывным оплавлением.
Читайте также:  Какой газ нужен для сварки полуавтоматом

Рельефная

Метод характеризуется специфической подготовкой к свариванию. На контактные плоскости предварительно устанавливают возвышения, называемые рельефами. После выполнения стыковки по точкам на них подают электрический ток, который вызывает деформацию рельефов.

Диффузионная

В основе технологии лежит явление диффузии – взаимного проникновения частиц друг в друга. При повышении температуры интенсивность движения атомов возрастает, создавая оптимальные условия для соединения деталей. Процесс протекает в условиях безвоздушного пространства или в среде защитных газов.

Высокочастотными токами

Металл плавится под влиянием токов высокой частоты. После кристаллизации обрабатываемой зоны образуется прочный сварной шов.

Трением

Основное преимущество данного способа сочленения – возможность работы с разнородными металлами. Согласно технологическим требованиям, одна заготовка должна быть надежно зафиксирована в специальном суппорте. Вторую раскручивают вокруг своей оси и под давлением стыкуют с первой. Тепловой энергии, которая выделяется за счет силы трения, достаточно для образования новых молекулярных связей.

Механический класс

Взрывом

Основной способ для получения биметаллических соединений. Для спекания заготовок используют тепловую энергию, которая освобождается при взрыве.

Ультразвуковая

Данный способ использует ультразвуковые колебания для образования неразъемных связей между атомами. Уникальность технологии заключается в возможности сваривания различных материалов, начиная от металла, заканчивая кожей или стеклом.

Холодная

Уникальный метод сваривания материалов, который отличается низкой рабочей температурой, находящейся ниже уровня рекристаллизации структуры металла. Технологические требования заключаются в тщательной подготовки рабочей плоскости. Она должна быть очищена от чужеродных элементов. Непосредственно перед началом цикла производят обезжиривание поверхности.

Эту сварку давлением применяют для работы с материалами, чувствительными к температурным перепадам.

Международные обозначения

При выполнении работ на территории России, в строительстве и других отраслях промышленности, все сварочные процессы подчиняются требованиям ГОСТа Р ИСО 4063-2010. Это отечественный аналог международного стандарта ISO 4063:2009.

В искусстве

Художественная сварка – это недавно зародившееся направление в искусстве. Мастера, занимающегося созданием скульптурных композиций называют арт-сварщиком. В Москве, и других крупных городах, проходят многочисленные выставки, которые знакомят ценителей с новыми произведениями.

Можно с уверенностью утверждать, что художественной сваркой по металлу с каждым годом интересуется все больше людей.

Заключение

В статье было рассказано, какие бывают виды сварки: от электросварки до соединения ультразвуком.

Сварка как процесс. Виды сварки

By WG – Posted on 25 Октябрь 2010

Как происходит сварка.

К электроду и свариваемому изделию для образования и поддержания электрической дуги от источников сварочного тока подводится электроэнергия. Под действием теплоты электрической дуги кромки свариваемых деталей и электродный металл расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии. В сварочной ванне электродный металл смешивается с расплавленным металлом изделия (основным металлом), а расплавленный шлак всплывает на поверхность, образуя защитную плёнку. При затвердевании металла образуется сварное соединение. Энергия, необходимая для образования и поддержания электрической дуги, получается от специальных источников питания постоянного или переменного тока.

В процессе электросварки могут быть использованы плавящиеся и неплавящиеся электроды. В первом случае формирование сварного шва происходит при расплавлении самого электрода, во втором случае — при расплавлении присадочной проволоки (прутков и т. п.), которую вводят непосредственно в сварочную ванну.

Для защиты от окисления металла сварного шва применяются защитные газы (аргон, гелий, углекислый газ и их смеси), подающиеся из сварочной головки в процессе электросварки.

Различают электросварку переменным током и электросварку постоянным током. При сварке постоянным током шов получается с меньшим количеством брызг металла, поскольку нет перехода через нуль и смены полярности тока.

В аппаратах для электросварки постоянным током применяются выпрямители.

Классификация
Классификация дуговой сварки производится в зависимости от степени механизации процесса, рода тока и полярности, типа сварочной дуги, свойств сварочного электрода, вида защиты зоны сварки от атмосферного воздуха и др.

По степени механизации различают:

* ручную дуговую сварку
* полуавтоматическую дуговую сварку
* автоматическую дуговую сварку

Отнесение процессов к тому или иному способу зависит от того, как выполняются зажигание и поддержание определённой длины дуги, манипуляция электродом для придания шву нужной формы, перемещение электрода по линии наложения шва и прекращения процесса сварки.

При ручной дуговой сварке указанные операции, необходимые для образования шва, выполняются человеком вручную без применения механизмов.

При полуавтоматической дуговой сварке плавящимся электродом механизируются операции по подаче электродной проволоки в сварочную зону, а остальные операции процесса сварки осуществляются вручную.

При автоматической дуговой сварке под флюсом механизируются операции по возбуждению дуги, поддержанию определённой длины дуги, перемещению дуги по линии наложения шва. Автоматическая сварка плавящимся электродом ведётся сварочной проволокой диаметром 1-6 мм; при этом режим сварки (ток, напряжение, скорость перемещения дуги и др.) более стабилен, что обеспечивает однородность качества шва по его длине, в то же время требуется большая точность в подготовке и сборке деталей под сварку.

По роду тока различают:
* электрическая дуга, питаемая постоянным током прямой полярности (минус на электроде)
* электрическая дуга, питаемая постоянным током обратной (плюс на электроде) полярности
* электрическая дуга, питаемая переменным током

По типу дуги различают

* дугу прямого действия (зависимую дугу)
* дугу косвенного действия (независимую дугу)
В первом случае дуга горит между электродом и основным металлом, который также является частью сварочной цепи, и для сварки используется теплота, выделяемая в столбе дуги и на электродах; во втором — дуга горит между двумя электродами.

По свойствам сварочного электрода различают:

* способы сварки плавящимся электродом
* способы сварки неплавящимся электродом (угольным, графитовым и вольфрамовым)

Сварка плавящимся электродом является самым распространённым способом сварки; при этом дуга горит между основным металлом и металлическим стержнем, подаваемым в зону сварки по мере плавления. Этот вид сварки можно производить одним или несколькими электродами. Если два электрода подсоединены к одному полюсу источника питания дуги, то такой метод называют двухэлектродной сваркой, а если больше — многоэлектродной сваркой пучком электродов.
Если каждый из электродов получает независимое питание — сварку называют двухдуговой (многодуговой) сваркой. При дуговой сварке плавлением КПД дуги достигает 0,7-0,9.

По условиям наблюдения за процессом горения дуги различают:

* открытую
* закрытую
* полуоткрытую дугу

При открытой дуге визуальное наблюдение за процессом горения дуги производится через специальные защитные стёкла — светофильтры. Открытая дуга применяется при многих способах сварки: при ручной сварке металлическим и угольным электродом и сварке в защитных газах.
Закрытая дуга располагается полностью в расплавленном флюсе — шлаке, основном металле и под гранулированным флюсом, и она невидима.
Полуоткрытая дуга характерна тем, что одна её часть находится в основном металле и расплавленном флюсе, а другая над ним. Наблюдение за процессом производится через светофильтры. Используется при автоматической сварке алюминия по флюсу.

По роду защиты зоны сварки от окружающего воздуха различают:

* дуговая сварка без защиты (голым электродом, электродом со стабилизирующим покрытием)
* дуговая сварка со шлаковой защитой (толстопокрытыми электродами, под флюсом)
* дуговая сварка со шлакогазовой защитой (толстопокрытыми электродами)
* дуговая сварка с газовой защитой (в среде защитных газов)
* дуговая сварка с комбинированной защитой (газовая среда и покрытие или флюс)

Стабилизирующие покрытия представляют собой материалы, содержащие элементы, легко ионизирующие сварочную дугу. Наносятся тонким слоем на стержни электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки.

Защитные покрытия представляют собой механическую смесь различных материалов, предназначенных ограждать расплавленный металл от воздействия воздуха, стабилизировать горение дуги, легировать и рафинировать металл шва.

Наибольшее применение имеют средне — и толстопокрытые сварочные электроды, предназначенные для ручной дуговой сварки и наплавки, изготовляемые в специальных цехах или на заводах.

В последнее время получает распространение плазменная сварка, где дуга между инертными неплавящимися электродами используется для высокотемпературного нагрева промежуточного носителя, например — водяного пара. Известна также сварка атомарным водородом, получаемым в дуге между вольфрамовыми электродами, и выделяющем тепло при рекомбинации в молекулы на свариваемых деталях.

Газопламенная сварка

Источником теплоты является газовый факел, образующийся при сгорании смеси кислорода и горючего газа. В качестве горючего газа могут быть использованы ацетилен, водород, пропан, бутан, блаугаз, МАФ, бензин, бензол, керосин и их смеси. Тепло, выделяющееся при горении смеси кислорода и горючего газа, расплавляет свариваемые поверхности и присадочный материал с образованием сварочной ванны. Пламя может быть окислительным, «нейтральным» или восстановительным, это регулируется количеством кислорода.

* В последние годы в качестве заменителя ацетилена применяется новый вид топлива — сжиженный газ МАФ (метилацетилен-алленовая фракция). МАФ обеспечивает высокую скорость сварки и высокое качество сварочного шва, но требует применения присадочной проволоки с повышенным содержанием марганца и кремния (СВ08ГС, СВ08Г2С). МАФ гораздо безопаснее ацетилена, в 2-3 раза дешевле, и удобнее при транспортировке. Благодаря высокой температуре сгорания газа в кислороде (2927 °C) и высокому тепловыделению (20800 Ккал/м³) газовая резка с использованием МАФ гораздо эффективнее других газов в том числе и ацетилена.

* Огромный интерес представляет применение для газовой сварки использование дициана ввиду весьма высокой температуры сгорания (4500 °C). Препятствием к расширенному применению использования дициана для сварки и резки является его повышенная токсичность. С другой стороны эффективность дициана весьма высока и сравнима с электрической дугой, и потому дициан имеет значительную перспективу для дальнейшего прогресса в развитии газопламенной обработки. Пламя дициана с кислородом истекающее из сварочной горелки имеет резкие очертания, очень инертно к обрабатываемому металлу, короткое и имеющее пурпурно-фиолетовый оттенок. Обрабатываемый металл (сталь) буквально «течет», и при использовании дициана допустимы очень большие скорости сварки и резки металла.

Читайте также:  Самодельный осциллятор для сварки алюминия

* Значительным прогрессом в развитии газопламенной обработки с использованием жидких горючих может дать применение ацетилендинитрила и его смесей с углеводородами ввиду самой высокой температуры сгорания (5000 °C). Ацетилендинитрил склонен при сильном нагреве к взрывному разложению, но в составе смесей с углеводородами гораздо более стабилен. В настоящее время производство ацетилендинитрила очень ограниченное и продукт дорогой, но при развитии производства ацетилендинитрил может весьма ощутимо развить области применения газопламенной обработки во всех ее областях применения.

Электрошлаковая сварка

Источником теплоты служит флюс, находящийся между свариваемыми изделиями, разогревающийся проходящим через него электрическим током. При этом теплота, выделяемая флюсом, расплавляет кромки свариваемых деталей и присадочную проволоку. Способ находит своё применение при сварке вертикальных швов толстостенных изделий.

Какие виды сварки бывают (описание и преимущества)

Итак, инверторная сварка,- что это? По сути, инверторная сварка является процессом, в котором используется схема, система или некий прибор, задача которого заключается в создании переменного напряжения при использовании источника постоянного тока.

Инверторная сварка

В общую схему такого сварочного аппарата включается сетевой фильтр, сетевой выпрямитель, частотный преобразователь, высокочастотный трансформатор, силовой выпрямитель и управляющая система.

Естественно, чтобы осуществлять сварку металлических конструкций, не достаточно только сварочного аппарата, потребуется пользоваться еще различными аксессуарами – маской, держателями и, естественно, электродами. Осуществление сварки без электродов просто невозможно. В процессе инверторной сварки пользуются тремя типами электродов – углеродистыми, легированными и высоколегированными.

Основные достоинства сварочных работ с использованием инверторного аппарата таковы:

  • розжиг осуществляется легко и быстро, дуга горит устойчиво и обладает хорошей эластичностью;
  • высокое качество сварного шва;
  • невысокие энергетические затраты при работе;
  • достаточно хороший КПД;
  • перепады напряжения питания не сказываются на качественных параметрах сварочных соединений;
  • данные аппараты легкие и мобильные.

Естественно, как и у любого процесса, у инверторной сварки имеются и свои минусы: сварочные аппараты инверторного типа, как и любые сложные электронные приборы, сильно подвержены влиянию воды, пыли и морозов. По этой причине, аппараты такого типа должны храниться в помещении, обеспечивающем требуемые параметры сухости и теплоты.

Еще одним важным моментом является уход за сварочным аппаратом, периодически будет требоваться открытие корпуса и продувка компонентов прибора при помощи сжатого воздуха.

Аргоновая сварка

Аргоновая сварка является одним из видов сварочных работ, позволяющих производить сваривание сложных и тугоплавких металлов. При помощи этого метода сварки, часто варят алюминий и другие металлы, у которых происходит процесс окисления взаимодействия с воздухом.

Аргоновую сварку чаще всего применяют в такой отрасли как автомобильная промышленность, во время ремонта различных узлов автомобиля, сделанных из алюминия. Кроме этого, аргоновую сварку используют в металлургической отрасли, к примеру, чтобы осуществлять горячую обработку титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория и чтобы обрабатывать щелочные металлы.

Применение аргона как газа – достаточно распространенная практика, к примеру, электрические лампочки тоже его содержат.

Аргоновая сварка — это достаточно сложный процесс, для осуществления которого требуется высокая квалификация и современное оборудование. Однако, и результат данного процесса на уровне – швы получаются ровными, бывает, что почти незаметные, и в то время очень прочные.

Аргонно-дуговую сварку осуществляют, применяя для этого вольфрамовые электроды и керамическое сопло. Именно по этому соплу на место сварки и поставляется аргон, которые не дает металлу вступить в контакт с атмосферой. А это в свою очередь препятствует окислению металла и обеспечивает выполнение прочного сварного шва.

Аргоновую сварку можно разделить на два вида: на ручную сварку и автоматическую.

Так чем же хороша аргонно-дуговая резка и сварка металлических конструкций? Для начала, стоит отметить, что в связи с тем, что при данном процессе используется современное оборудование, время работы значительно уменьшается. Помимо этого, аргоновая струя в процессе сварочных работ кроме защиты металла от влияния воздуха еще и сдувает все лишнее и не нужное.

Ну и последнее, но самое главное, данный вид сварочных работ является очень экономичным. Это связано с тем, что при помощи аргона электрическая дуга сжимается и концентрируется в узкой области. По этой причине, имея сравнительно небольшие затраты электроэнергии, можно добить температуры зоны резки порядка 4000…6000°C.

Аргонно-дуговая сварка

Если вам потребовалось сварить стальную конструкцию, то вы, недолго думая, возьмете в руки сварочный аппарат и без труда справитесь с этой задачей. Но что делать, если сварочные работы требуется произвести, к примеру, для алюминиевой конструкции? Тут-то вам и поможет аргонно-дуговая сварка.

Аргонодуговая сварка является сваркой при помощи электрической дуги в инертной аргоновой среде. Для данной сварки могут использовать плавящиеся или неплавящиеся электроды. Как неплавящимся электродом, чаще всего пользуются вольфрамовым электродом.

Горение дуги происходит от свариваемого изделия до неплавящегося электрода (как уже говорилось, скорее всего, вольфрамового). Крепеж электрода производиться к горелке, по соплу которой производиться подача защитного газа. Подача присадочного материала производиться к зоне дуги из вне, в электрической цепи не включается.

Аргоновый сварку могут производить в ручном режиме, когда управление горелкой и присадочным прутком производит сварщик, и в автоматическом режиме, когда перемещение горелки и присадочной проволоки производиться без помощи рабочего.

При сварке неплавящимся электродом, в отличие от сваривания при помощи плавящегося электрода, во время розжига дуги электрод не прикасается к изделию по таким причинам. Для начала, у аргона имеется высокий потенциал ионизации, по этой причине ионизация дугового промежутка при помощи искры от электрода к изделию – это достаточно сложная задача.

Для случая с аргоновой сваркой при помощи плавящегося электрода после касания проволокой детали, зона дуги насыщается парами металла, которые обладают потенциалом ионизации почти в три раза ниже, чем имеет аргон, в результате чего разжигается дуга.

Кроме этого, если произойдет касание детали и вольфрамового электрода, будут происходить такие вещи как загрязнение и интенсивное оплавление. По этой причине во время аргоновой сварки с использованием неплавящегося электрода, чтобы разжечь дугу к сети источника питания параллельно подключают прибор, который называется «осциллятором».

При помощи осциллятора, чтобы зажечь дугу к электроду производиться подача высокочастотных высоковольтных импульсов, ионизирующих дуговое пространство и обеспечивающих розжиг дуги, когда включается сварочный ток. Если аргоновую сварку производят с переменным током, когда дуга разожжена, осциллятор начинает работать как стабилизатор, подающий импульсы к дуге, когда сменяется полярность.

Это нужно для предотвращения деионизации дугового пространства и обеспечения устойчивого горения дуги.

Во время сварки с постоянным током, анод и катод выделяют разное тепло. Когда токи меньше 300 А, анод выделяет больше тепла чем катод, 70 на 30 в процентном соотношении, по этой причине обычно используют прямую полярность, для обеспечения максимального проплавления детали и минимального разогрева электрода.

При сварке всех сталей, титана и других материалов, кроме алюминия, используется прямая полярность. При сварке алюминия используется переменный ток, чтобы улучшить разрушение оксидной пленки.

Аргон иногда смешивают с 3–5% кислорода, для уменьшения пористости. Это становиться причиной более активной защиты металла. Аргон в чистом виде производит защиту металла от таких явлений как влага или другие включения, попавшие в сварочную зону. А при помощи кислорода осуществляется выгорание вредных примесей, или их выделение наружу. А это помогает бороться с пористостью.

Сварочный полуавтомат без газа

Если вы решили купить сварочный полуавтомат без газа, то, скорее всего вы уже столкнулись с огромным множеством различных вариантов, представленных на рынке. Давайте же попробуем разобраться в том, как должен выглядеть этот прибор в общем виде.

Сварочный аппарат должен быть недорогим и мощным. Лучше всего чтобы он работал полуавтоматически, от постоянного тока с использование плавящейся проволоки. Желательно, чтобы в автомате, кроме режима работы без газа на флюсовой проволоке, была еще реализована возможность работы на газу (на углекислом газе и на аргоне).

Немаловажный фактором является и выбор компании производителя. Изготовитель выбранного вами аппарата должен находиться в числе лидеров в таких сферах как промышленное и бытовое производство оборудования для сварочных работ. Данная компания должна быть официально представлена на рынке вашей страны, и обладать всеми сертификатами качества и безопасности, а так же иметь сервисные центы обслуживания.

Подача проволоки должна регулироваться плавно. Должна быть возможность реализовать ступенчатую регулировку мощности сварочных токов от 50 до 140 А. В аппарат должна помещаться даже 5-тикилограмовая катушка проволоки. Устройство должно быть снабжено тепловой защитой и принудительным воздушным охлаждением. В автомате должна быть реализована возможность работы с питанием от слабых сетей.

Обмотка в трансформаторе аппарата должна быть выполнена из меди. Устройство должно быть многофункциональным, кроме использования в быту, аппарат должен осилить и производственные потребности (к примеру, ремонтная мастерская и СТО). Хорошо, если аппарат будет снабжаться колесиками, для удобства транспортировки.

Ну и последнее, и самое главное, при выборе сварочного полуавтомата без газа, зайдите в интернет и внимательно изучите отзывы о данном аппарате людей, которые им пользовались, и которым есть с чем сравнивать.

Ссылка на основную публикацию
Adblock
detector