Какими физическими параметрами определяются режимы контактной сварки? - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Какими физическими параметрами определяются режимы контактной сварки?

Режимы контактной сварки, способы ведения и свариваемость материалов

Содержание:

Режимы контактной сварки – это набор параметров, которые устанавливаются сварщиком перед началом работ. Параметры этих режимов сварки зависят от металлоизделия, которое планируется сваривать, опыта сварщика и прочего. Выбранные режимы сварки сказываются непосредственно на качестве полученного соединения: неправильно подобранные параметры могут привести к некачественному шву, который впоследствии может потрескаться.

Основными параметрами для контактной сварки будет:

  • Сила электрического тока.
  • Усиление сжатия для свариваемых деталей.
  • Длительность протекания тока.

О разных режимах сварки, а конкретно контактного способа сваривания, мы поговорим далее.

Режимы сварки и их влияние на свариваемость металлов.

Режимы сварки подразделяются на два основных вида:

Отличаются оба вида длительностью воздействия тока на свариваемую деталь. Жесткий режим сваривания металлоизделия предполагает непродолжительное воздействие тока на детали, тогда как мягкие режимы сварки наоборот – длительное воздействие.

Выбор того или иного вида зависит, в первую очередь, от металла, который необходимо сваривать: имеет значение его толщина, показатели теплопроводности и пр. Так, жесткие режимы сваривания обычно применяются для металлов, имеющих большую толщину, но при этом меньшую теплопроводность. Например, режим сварки для низкоуглеродистой стали будет намного жестче, чем для сплавов из алюминия

Форма расплавления металла и нахождения зоны расплава во многом зависит от процессов тепловыделения и теплоотвода, которые происходят в электроде и собственно свариваемой детали. Длительность воздействия тока влияет на тепловыделения и теплоотвод, а соответственно и на само сварное соединение.

При ведении сваривания в мягком режиме, форма и расположение литой зоны будет зависеть непосредственно от электрода и свариваемых материалов. Так, на мягком режиме сварки литое ядро находится на одинаковом расстоянии от поверхностей детали, это способствует тому, что неровности, образующиеся в процессе сваривания, смещаются в деталь, имеющую большую толщину.

Заметим, что при мягких режимах сваривания (при которых время нагрева металлоизделия значительно больше) зона термического воздействия также будет шире, чем при жестком сваривании.

При жестком сваривании это ядро будет находиться довольно симметрично по отношению к обеим свариваемым деталям. Во время сваривания нужно учитывать, что теплоотвод в электроды при жестком сваривании минимальный, именно это позволяет при таком режиме сварки получать большую высоту литой зоны (другими словами жесткие режимы сваривания деталей, имеющих одинаковую толщину, дают большую глубину проплавления).

Качество полученных сварных соединений, выполненных при разных режимах сварки, оценивают по таким параметрам:

  • Шов не должен иметь значительного разупрочнения в зоне соединения металлов.
  • Недопустимо образование довольно хрупких структур в зоне соединения, которые впоследствии могут разрушиться. Особенно это относится к переходной зоне шва.
  • Зона соединения должна быть однородной и плотной, литая и переходная зона не должны иметь видимых нарушений их сложности.
  • Соединение должно быть достаточно прочным.
  • Сварочные работы не должны снизить коррозионную стойкость металлоизделия.
  • Деформации деталей допускаются в пределах нормы.

Отметим, что при выполнении контактной сварки соблюдение этих условий зависит от возможностей вашего оборудования для сваривания, собственно изделия, которое будет свариваться, опыта сварщика.

Имейте ввиду, что металлы, имеющие хорошие показатели свариваемости, позволяют сварщикам использовать разнообразные параметры для установки режима сваривания, а это, в свою очередь, позволяет получать более качественные соединения.

Способы контактной сварки и образование соединений.

Все способы и режимы контактной сварки основаны на нагреве деталей с помощью теплоты, которая выделяет при протекании по ним электрического тока. Количество выделяющейся теплоты, главным образом, зависит от силы тока, времени его протекания по металлу, а также от сопротивления самого металла в зоне сварки.

Если проводится сваривание двух и более деталей, сжатых между собой, то к ним подводится электрический ток через обычные электроды. При этом напряжение может быть небольшим, от 3 В, а вот сила тока может достигать десятков тысяч ампер. Теплота, что является необходимой для сварки, выделяется в основном в деталях, в зоне контакта деталей друг с другом и их контакта с электродами. При этом существенное значение в режимах контактной сварки имеет электрическое сопротивление металлов.

Таким образом, делаем заключение, что выбор режима сварки зависит непосредственно от свойств выбранных материалов. Режимы контактной сварки зависят от теплопроводности и толщины деталей.

Заметим, что при жёстких режимах количество выделяемой теплоты в разы больше, поэтому их используют только для металлов с низкой теплопроводностью, например для стали.

Режимы точечной сварки, параметры

Точечная сварка на производстве

Режим точечной сварки устанавливается следующими основными параметрами: силой или плотностью тока, временем нагрева, давлением, диаметром рабочей части электрода. Кроме того, часто задается время предварительного сжатия электродов tсж, время проковки tnp форма рабочей части электрода и материал для его изготовления. Режимы специальных видов точечной сварки имеют еще некоторые дополнительные параметры.

Точечная сварка малоуглеродистой стали, как и стыковая, может производиться в очень широком диапазоне изменения параметров, однако каждому варианту режимов соответствует свое определенное соотношение параметров между собой.

Мягкие режимы характеризуются малой силой тока и большим временем нагрева, для жестких режимов сила тока большая, время нагрева — с варианта режима должен производиться с учетом конкретных условий производства и требований к сварочному соединению.

Сваривание точечной сваркой

Особенности названных вариантов точечной сварки

Мягкие режимы

Сварка на мягких режимах сопровождается образованием широкой зоны разогрева, что облегчает деформирование металла и позволяет ограничиться не очень высокими требованиями к точности правки заготовок, как при жестких режимах.

  • Так как время нагрева повышено, степень влияния теплоты от быстро исчезающего контактного сопротивления на общий нагрев здесь несколько снижается.
  • Поэтому могут быть снижены н требования к тщательности подготовки поверхности заготовок.
  • Мощность электрическая я механическая при сварке на мягких режимах требуется более умеренная, чем при сварке на жестких режимах.

Жесткие режимы

Жесткие режимы обеспечивают более высокую производительность и меньший расход энергии. Ввиду того, что поверхность деталей под электродами при жестких режимах нагревается сравнительно меньше, электроды нагреваются слабее в, несмотря на рост давления, расход их снижается. Заметно уменьшается глубин2 вмятая в месте сварки и коробление изделия. В целом жесткие режимы целесообразны, прежде всего, в массовом производстве, где выигрыш в производительности и расходе энергии полностью окупит дополнительные расходы, связанные с приобретением, эксплуатацией и питанием более мощного оборудования.

Читайте также:  Расход углекислоты при сварке полуавтоматом

Сила и плотность тока.

С увеличением толщины свариваемых листов сила тока должна повышаться. Для сварки низкоуглеродистых сталей средней толщины на серийных машинах ориентировочный выбор силы тока l может осуществляться по следующему соотношению:

Где q толщина свариваемых листов в мм.

При сварке листов различной толщины выбор параметро производится во условию достаточности нагрева и деформации более тонкого листа. Потому а приведенном соотношении и в последующих величина q отнесена к более тонкому листу.

Плотность тока I для жестких режимов выбирается в пределах 120 — 360 д/Лм*, для мягких 80— 160 а мм2.

С увеличением толщины листов плотность то/? снижается. Когда металл свариваемых деталей обладает повышенной тепло- и электропроводностью, плотность тока должна увеличиваться. Так, при сварке алюминия или его сплавов плотность тока иногда достигает 1000 а/мм2 и выше. Как упоминалось ранее, плотность тока должна выбираться большей, когда по каким-нибудь соображениям давление принимается повышенным.

Контактная точечная сварка

Время нагрева

Как и сила тока, время нагрева (tcs) возрастает с увеличением толщины деталей. Ориентировочно для сварки малоуглеродистой стали на жестких режимах время нагрева может выбираться по соотношению

где q — толщина более тонкого листа в мм.

Меньшее время нагрева брать не рекомендуется, так как случайные, даже незначительные погрешности в работе регулятора времени могут вызвать серьезные отклонения от требуемого нагрева и качества сварки.

Для сварки листов толщиной до 3 мм на мягких режимах подбор времени нагрева может производиться пo соотношению.

Слишком длительный нагрев может вызвать перегрев металла в зоне сварки.

Для сварки металлов с высокой теплопроводностью время сварки принимается малым (при большой силе тока), при сварке закаливающихся сталей, наоборот, во избежание образования закалочных трещин при быстром охлаждения время нагрева часто приходится увеличивать (при соответствующем снижении тока).

Ход точечной сварки

Давление

Выбор давления (P) производится в зависимости от толщины, состояния и материала заготовок, а также от характера принятого режима нагрева.

Для сварки малоуглеродистой стали давление в зависимости от толщины выбирается do формуле

где q —толщина в мм.

Удельное давление имеет предел Зх10 кг/мм2.

Мягкую горячекатаную сталь возможно спаривать при меньших давлениях. Холоднокатаная сталь, получившую повышенную твердость наклепа, требует некоторого повышения давления (на 20—30%). Когда заготовки плохо выправлены и имеют коробления, то, прежде чем плотно сдавить листы на участке сиамки, приходится произвести правку под электродами. Общее требуемое усилие а этом случае должно быть увеличено, особенно при больших толщинах. Так, для листов толщиной 3—6 мм только это дополнительное усилие составляет 100—400 ке. По этой же причине усилие должно возрастать и тогда, когда точки располагаются о тех местах свариваемого узла, где сдавливание листов затруднено (вблизи ребер и других элементов жесткости, а местах сопряжения деталей но радиусу и т. д.).

Удельное давление возрастает вместе с прочностью свариваемого металла. При сварке низколегированных сталей оно может составить 120—160% к удельному давлению для малоуглеродистой стали, при сварке аустенитно и жаропрочных сталей и сплавов но повышается в 2—3 раза.

  • Диаметр электрода. Диаметр электрода (d) определяет плотность тока, удельное давление и степень интенсивности охлаждения поверхности детали.
  • На элек­трическое сопротивление зоны сварки диаметр электрода влияет относительно мало, лишь в конечной стадии на- грела, когда достигается полное соприкосновению поверхностей электрода и детали.
  • Поэтому яри длительном нагреве влияние диаметра электрода сказывается сильнее. Диаметр электрода возрастает с толщиной деталей.
  • Для толщины до 3 мм диаметр электрода рассчитывается но следующей формуле:

где q — толщина более топкого листа.

Для деталей с большей толщиной расчет ведется по формуле

Изменением диаметра электрода часто пользуются для выравнивания нагрева отри сварке деталей, неодина­ковых по толщине или по роду металла.

В ходе процесса сварки под влиянием сильного нагрева и большой механической нагрузки рабочая часть электрода меняется с образованием грибовидною утолщения, а поверхность загрязняется окислами металла. Увеличение фактического диаметру электрода при неизменных силе тока и усилии сжатия означает снижение плотности тока и удельного давления. Вследствие этого интенсивность нагрева в сварочном контакте сильно уменьшается, а уплотнение металла затрудняется и сварка может оказаться некачественной. Кроме того, загрязнение поверхности электродов может вызвать увеличение переходного сопротивления, перегрев и даже оплавление поверхности листов. Обычно считают, что связанное с износом возрастание диаметра более чем на 10% уже недопустимо. Такие электроды должны зачищаться напильником, специальным приспособлением или перетачиваться.

Время предварительного сжатия

Пол временем предварительного сжатия понимается от начала приложения давления до начала нагрева. Оно должно быть достаточным, чтобы механизм сжатия успел свести электроды и развить давление до заданной величины. Этот параметр непосредственного влияния на тепловые процессы при сварке не имеет. Для повышения производительности данный параметр следует сокращать, насколько позволяет скорость работы механизма сжатия.

Время проковки

Время проковки (tnp) определяется длительностью нахождения уже сваренной точки под сжимающим воздействием электродов. Этот параметр влияет на скорость охлаждения металла после сварки, так как после нагрева, в условиях плотного соприкосновения электродов и детали, тепло от зоны сварки особенно быстро отводится в электроды.

При сварке закаливающихся сталей ускоренное охлаждение может вызвать появление трещин и время проковки поэтому следует уменьшать.

Однако во всех случаях давление не должно сниматься ранее некоторого времени, необходимого для полного затвердевания и упрочнения ядра. В противном случае деформированные при сварке листы, стремясь упруго возвратиться в начальное положение, могут разрушить еще не остывшее ядро, С повышением толщины время проковки возрастает, так как объем нагретого металла и время охлаждения увеличиваются.

Какими физическими параметрами определяются режимы контактной сварки? Краткая характеристика режимов, их влияние на свариваемость металлов

На выбор режима сварки влияют такие факторы, как тип используемого сварочного оборудования, свойства материалов, из которых изготовлен объект, и его форма. При этом неправильный выбор может привести к деформации металла, нарушению конструкции всего изделия и ухудшению качества.

Читайте также:  Дроссель для сварки постоянным током своими руками

Основные физические параметры для контактной сварки

Главные параметры режимов контактной сварки – сила тока, длительность протекания и усилие, с которым сжимаются соединяемые детали:

  1. Сила сварочного тока. Измерения этого параметра проводятся в Амперах или кило-Амперах, замеры производятся с помощью специальных приборов.
  2. Усилие сжатия для свариваемых деталей. Измеряется в декаНьютонах. Замеры также производятся с помощью специального оборудования.
  3. Длительность протекания сварочного тока. Измеряется секундами, засекается таймером.
  4. В редких случаях с целью уплотнения ядра сварки может быть применено также ковочное усилие.

Режимы контактной сварки, их краткие характеристики и влияние на свариваемость металлов

Режимы контактной сварки имеют два основных вида, главное отличие которых в длительности воздействия проводимого в металле тока на соединяемые сваркой детали:

При выборе режима также стоит учитывать свариваемость материалов. Это свойство металла, определяющееся несколькими параметрами. И чем больше параметров подходит под сварку, тем выше показатель свариваемости у выбранного материала.

Хорошая свариваемость металлов позволяет оптимально подобрать подходящий режим сразу по нескольким параметрам, что снижает вероятность погрешностей и дефектов при выполнении работ. Низкая свариваемость требует большего опыта в работе, так как параметров для необходимых настроек меньше.

Качество сварных соединений

Качество полученных в результате сварки соединений, выполненных при различных режимах работ, оценивают по следующим параметрам:

  • в месте соединения свариваемых материалов не должно быть значительного разупрочнения;
  • не допускается наличие хрупких соединений непосредственно в зоне сварки, так как они впоследствии могут привести к разрушению всей конструкции. Особенно тщательно стоит проверять переходную зону шва, которая подвергается непосредственному воздействию;
  • зона соединения должна быть однородной и плотной по всей площади стыка деталей, литая и переходная зоны не должны иметь видимых нарушений во избежание разрушения материала и всей конструкции;
  • соединение должно быть достаточно прочным для заявленных на конструкцию параметров оказываемого внутреннего и внешнего давления в процессе эксплуатации;
  • сварочные работы не должны снизить коррозионную стойкость металлоизделия. Если это требование будет нарушено, то ржавчина может разрушить конструкцию и привести к деформации и аварийной ситуации, что недопустимо;
  • деформация деталей допускается в пределах нормы и не должна влиять на конструктивные особенности детали. Особенно это касается деталей сложной формы.

Соблюдение всех необходимых условий зависит не только от имеющегося оборудования, его возможностей, свариваемого материала, но и от опыта сварщика. Выбор металла с хорошими показателями свариваемости позволит в итоге получить наиболее качественный результат соединения, так как подбор режима будет осуществляться сразу по нескольким параметрам.

Для контроля за качеством соединения деталей используются методы разрушающего и неразрушающего контроля. К первому виду относятся: контроль аммиаком, керосином, воздушным или гидравлическим давлением, вакуумный контроль, люминесцентный контроль или, как его еще называют, контроль методом красок, магнитный контроль, контроль газоэлектрическими течеискателями, а также ультразвуковой контроль. Ко второму виду можно отнести макроструктурный и микроструктурный анализы.

Данные виды контроля позволяют выявить даже небольшие дефекты, которые не визуализируются невооруженным глазом. Но в случае отсутствия контроля даже минимальные трещины и повреждения под воздействием высокого давления могут привести к огромным разрушениям, трагическим последствиям, а также нанесению экологического вреда и материальным потерям.

Режимы точечной сварки

Мягкие и жесткие режимы точечной сварки, их влияние на производительность и качество

При точечной сварке используются два режима, мягкий и жесткий. Мягкому режиму характерна сравнительно малая сила тока, при плотности тока не превышающей 100 A/мм2. Жесткие режимы характеризуются плотностью тока для сварки стали 100…300 A/мм2.

При использовании мягких режимов точечной сварки возрастает продолжительность времени сварки, но происходит плавный нагрев сварочной точки. Преимуществами мягкой сварки являются низкое потребление мощности из сети, меньшая стоимость контактных машин, малая закалка зоны сварки. Использование жестких режимов требует повышенной мощности контактных машин и увеличивает нагрузку на сеть. Преимуществом жестких режимов является высокая производительность за счет сокращения времени сварки одной точки.

Неправильная установка режима сварки приводит к появлению разнообразных дефектов. Наибольшую опасность представляет непровар, характеризующийся отсутствием у сварной точки литого ядра. Либо малыми размерами ядра. Опасность непровара еще и в том, что он неопределим при внешнем осмотре готового изделия. Кроме этого к дефектам относится прожог металла, пористость и раковины литого ядра.

Точечную сварку чаще всего используют для соединения деталей из низкоуглеродистых сталей, обладающих хорошей свариваемостью. Для сваривания склонных к закалке легированных сталей, также сталей с высоким содержанием углерода следует использовать мягкие режимы. При использовании жестких режимов происходит закалка ядра точки и его окружающей зоны, данный дефект точечной сварки может привести к образованию трещин при эксплуатации изделия. Также для сварки сталей повышенной прочности требуется увеличение рабочего давления.

В некоторых случаях после сварки необходима термообработка детали, чтобы снять внутренние напряжения созданные процессом сварки. Также термообработку проводят для того, чтобы улучшить структуру металла путем избавления от мартенситной составляющей. В большинстве случаев достаточно высокого отпуска. Термообработка сварочной точки проводится непосредственно после сварки путем пропускания тока через сварочные электроды. При термообработке металл точки не расплавляется, но происходит его отпуск.

Хорошо поддается сварке аустенитная хромоникелевая сталь. Для сокращения распада аустенита сварку производят на жестком режиме и с минимальным временем. Необходимо применять высокое давление, что требует электродов повышенной прочности.

Точечная сварка применяется для алюминия и его сплавов, а также для магниевых сплавов. Для сварки алюминия необходима высокая плотность тока, которая может достигать 1000…1500 A/мм2. Это объясняется высокой электро- и теплопроводностью алюминия. Сплавы алюминия свариваются лучше, чем чистый алюминий – это объясняется большим электрическим сопротивлением сплавов.

Установка радиатора отопления – срочное решение поставленных задач

В этой статье мы рассказали, насколько важна профессиональная установка радиатора отопления.

Читайте также:  Обработка порогов после сварки

Услуги сварщика в Краснодаре и крае

В первоначальном своем виде сварка существовала еще во времена древнего Египта. С небольшой допустимой погрешностью можно утверждать, что сваривать и спаивать металлы человечество научилось одновременно с освоением разных способов обработки металлов.

Установка газовой вытяжки

Чем установка газовой вытяжки отличается от обычной, узнайте из этой статьи.

Монтаж сантехники в домашних условиях

Невозможно в современном мире обойтись без сантехнического оборудования. Даже в самых дальних уголках нашего государства в каждом доме имеются в наличии ванные, краны, смесители и прочие приборы. Монтаж сантехники по природе своей кажется процессом не сложным, но с ним связанно столько нюансов, которые если их не учесть влекут немалые проблемы.

Вызвать сантехника на дом

Когда появляется необходимость вызвать сантехника на дом, многие домохозяйки теряются в догадках к кому обратиться за помощью. Ответ на этот вопрос ищите в данной статье.

Вызов сантехника на дом, качественные сантехнические работы

Вызов сантехника для большей части населения обычное дело, ведь сантехническое оборудование окружает нас повсюду: в туалете, в ванной, на кухне. Приятно когда все сантехнические приборы исправно работают и не нуждаются в услугах мастера: не течет кран, смывается вода в туалете, наполняется до краев бачок (и ни сантиметром выше), не слышно звука падающих капель. Однако, как не прискорбно, встречаются и обратные ситуации.

Точечная контактная сварка

Установки для автоматической сварки продольных швов обечаек – в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки – в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Особенности техники и технологии точечной контактной сварки

При точечной контактной сварке соединение создается между торцами электродов, подводящих ток и передающих усилие сжатия.

Точечной сваркой выполняют нахлесточные соединения листовых элементов одинаковой или разной толщины, соединения накладных деталей из стержневого или профильного проката с листовыми элементами, соединение пересекающихся стержней и др.

Конструктивное оформление узлов, конструкций и изделий, предназначаемых для точечной сварки, должно давать легкий и свободный доступ электродов машин к зоне сварки при наиболее простой конфигурации составляющих элементов. Не допускается введение больших ферромагнитных масс в сварочный контур машин, что имеет особо важное значение при использовании машин переменного тока. Сварку точек необходимо производить в последовательности, обеспечивающей наименьшую деформацию изделия.

Примеры наиболее распространенных типов сварных соединений на контактной точечной сварке приведены на рис. XIII.4.

При сварке элементов из низкоуглеродистой стали с толщиной каждой детали s не более 6 мм можно пользоваться следующими ориентировочными значениями основных конструктивных элементов точечного соединения (рис. XIII.5,а, б):

При отношении толщины деталей s/s1>2 минимальная величина нахлестки В и расстояние между осями соседних рядов точек С следует увеличить в 1,2—1,3 раза. При этом допускается увеличение глубины вмятин до 0,3 толщины деталей.

Размер и структура сварной точки, определяющие прочность сварного соединения, в значительной степени зависят от формы контактной (рабочей) поверхности электродов (см. рис. XIII.5,в, г). При сварке низкоуглеродистой стали преимущественно используют электроды с плоской рабочей поверхностью. Высокоуглеродистые и легированные стали, а также медь, алюминий и их сплавы сваривают электродами со сферической поверхностью.

В зависимости от числа свариваемых точек, схемы подвода тока к электродам и свариваемым деталям применяют следующие основные способы точечной сварки:

одноточечная двусторонняя (два электрода, питаемые от одного источника тока, расположены соосно с двух сторон свариваемых деталей);

двухточечная односторонняя (два электрода, питаемые от одного источника тока, расположены с одной стороны свариваемых деталей);

двухточечная двусторонняя (с каждой стороны свариваемых деталей соосно расположены по два электрода, питаемые от отдельных источников тока);

многоточечная односторонняя (несколько пар электродов, питаемые от отдельных источников тока, расположены с одной стороны свариваемых деталей).

Наиболее универсальным является способ одноточечной двусторонней точечной сварки, обеспечивающей возможность сваривать элементы строительных конструкций при толщине металла до 30+30 мм. Приводимые ниже данные (табл. XIII.9—XIII.15) относятся к этому способу точечной сварки.

Примечание. В таблице приняты следующие обозначения: I—сварочный ток; Iт.о — ток термической обработки; Iо — ток удаления окалины; Iп — ток подогрева; Р — усилие сжатия; t — время.

Примечание. Давление при сварке 100 МПа, при остальных операциях 200 МПа.

В зависимости от толщины свариваемых деталей и вида металла применяют различные технологические циклы сварки одной точки, отличающиеся характером изменений во времени действия тока I и давления Р.

Режимы точечной сварки

Основными параметрами режима точечной сварки являются: сварочный ток I (или плотность тока I длительность действия импульсов тока t; усилие сжатия или давления электродов Р; диаметр плоской контактной поверхности электрода dэ (см. рис. XIII.5, в, г) или радиус закругления R сферической поверхности электрода диаметром Dэ.

В табл. XIII.10 даны размеры контактных частей электродов для точечной сварки деталей толщиной до 5 мм.

При расплавлении ядра точки жидкий металл удерживается от вытекания слоями, нагретыми до температуры пластического состояния. Чрезмерная выдержка под током может привести к перегреву ядра, образованию внутреннего или внешнего выплеска металла и продавливанию электродами наружных слоев детали, что приведет к снижению прочности соединения.

В ответственных конструкциях (изделиях) рекомендуется одновременно сваривать не более двух деталей. При этом их толщины не должны отличаться более чем в 3 раза.

Точечной контактной сваркой можно одновременно сваривать несколько деталей, однако с увеличением числа деталей качество сварного соединения снижается. Во всех таблицах режимов точечной сварки, кроме оговоренных случаев (см. табл. XIII.14), предусматривается соединение двух деталей.

В табл. XIII.11 приведены данные о точечной сварке низкоуглеродистой стали двумя режимами (средним и форсированным).

В табл. XIII.12—XIII.14 сведены данные о режимах (средних) точечной сварки углеродистых сталей, в табл. XIII.15 — точечной сварки алюминиевых сплавов.

Малышев Б.Д. Сварка и резка в промышленном строительстве т.1. -M. 1989

Ссылка на основную публикацию
×
×
Adblock
detector