Способы производства стали - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Способы производства стали

Получение стали

Сталь является основным материалом, применяемым для создания современной техники. Это объясняется тем, что она обладает высокими прочностью и износостойкостью, хорошо сохраняет приданную форму в изделиях, сравнительно легко поддается различным видам обработки. Кроме того, основной компонент стали – железо – является широко распространенным элементом в земной коре.

Сталь производят в различных по принципу действия, трудоемкости, техническим возможностям металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических дуговых и индукционных печах и др. Основными материалом для производства стали по традиционным технологиям являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей значительно ниже, чем в чугуне (табл. 4.1). Общая схема технологических процессов производства стали показана на рис. 4.2.

Состав передельного чугуна и низкоуглеродистой стали, %

Рис. 4.2. Схема технологических процессов производства стали:

ЭШП – электрошлаковый переплав; ВДП – вакуум но-дуговой переплав; ЭЛП – электронно-лучевая печь; ПДП – плазменно-дуговой переплав

Производство стали по способу Бессемера

Одним из первых промышленно освоенных способов производства стали, примененным еще в середине XIX в., является способ Бессемера. По нему передел чугуна в сталь проводится продуванием воздуха через расплавленный горячий чугун. Процесс протекает без затраты топлива за счет теплоты, выделяющейся при экзотермических реакциях окисления кремния, марганца и других элементов. Конвертер Бессемера (рис. 4.3) представляет собой грушевидный стальной сосуд, футерованный внутри огнеупорным материалом. В дне имеются отверстия, через которые подается под давлением 0,12–0,125 МПа воздух для продувки. Расход воздуха составляет в среднем около 300 м3 на 1 т залитого чугуна. Конвертер работает периодически. Повернув его в горизонтальное положение, заливают чугун и подают воздух, затем поворачивают вертикально. Бессемеровский процесс протекает в три этапа. Первый заключается в основном в окислении железа, кремния, марганца. Второй начинается при температуре 1500°С: происходит интенсивное окисление углерода кислородом оксида железа (II) и воздуха.

Рис. 4.3. Конвертер Бессемера:

а – внешний вид; б – схема процесса; в – разливка готовой стали

Образующийся оксид углерода сгорает над конвертером ослепительно ярким пламенем длиной до 8 м. Продолжительность второго этапа 4–5 мин. Третий этап начинается с затуханием пламени от горения оксида углерода: происходит образование металла. Подачу воздуха прекращают, переводят конвертер в горизонтальное положение и вводят раскислители (ферромарганец или ферросилиций). Готовую сталь выливают в ковш (рис. 4.3, в) и направляют на разливку.

Процесс Бессемера протекает очень быстро (в течение 15 мин), поэтому производительность метода велика. Но этим способом можно переделывать в сталь не все сорта чугуна. Чугун для бессемерования должен содержать около 2% кремния, выгорание которого является источником теплоты, необходимой для осуществления процесса, а содержание серы и фосфора должно быть минимальным, так как эти примеси не удаляются в ходе процесса. К тому же значительное количество железа окисляется и теряется (велик “угар” железа).

Полученный в конвертере расплавленный металл содержит значительное количество растворенного оксида железа (II), что отрицательно сказывается на качестве стали, придавая ей хрупкость (красноломкость). Еще один недостаток конвертерной стали – повышенное содержание в ней азота. В производстве стали этим способом в последние годы успешно используется кислородное дутье или дутье воздухом, обогащенным кислородом. Это сокращает продолжительность процесса, что, в свою очередь, приводит к снижению содержания азота в стали.

Производство стали

Сталь – это железоуглеродистый сплав, который содержит около 1,5% углерода, если его содержание увеличивается, то значительно повышается хрупкость и твердость стали. Основной исходный материал для производства стали – стальной лом и передельный чугун.

Содержание примесей и углерода в стали намного ниже, чем в чугуне. Поэтому суть металлургического передела в сталь чугуна – это уменьшение содержания примесей и углерода за счет их избирательного окисления и превращения в газы и шлак в процессе плавки.

В первую очередь окисляется железо при взаимодействии кислорода и чугуна в сталеплавильных печах. Вместе с железом окисляются фосфор, кремний, углерод и марганец. Оксид железа, который образуется при высоком температурном режиме, отдает свой кислород в чугуне более активным примесям, при этом окисляя их.

Производство стали осуществляется в три стадии.

Первая стадия производства стали – расплавление породы

Происходит расплавление шихты и нагревается ванна жидкого металла. Температура металла невысокая, энергично окисляется железо, образуется оксид железа и окисляются примеси: марганец, кремний и фосфор.

Самая важная задача этой стадии производства стали – это удаление фосфора. Для этого нужно проводить плавку в основной печи, где шлак будет содержать оксид кальция (CaO). Фосфорный ангидрид – P2O5 будет образовывать с оксидом железа непрочное соединение (FeO)3 x P2O5. Оксид кальция – как более сильное основание, по сравнению с оксидом железа, и при не очень высоких температурах связывает P2O5 и превращает его в шлак.

Для того чтобы удалить фосфор, нужна не очень высокая температура, ванны шлака и металла, достаточное содержание в шлаке FeO. Для того чтобы увеличить в шлаке содержание FeO и ускорить окисление примесей добавляется в печь окалина и железная руда, наводя железистый шлак. Постепенно, по мере удаления из металла в шлак фосфора, содержание в шлаке фосфора повышается. Так что нужно убрать данный шлак с зеркала металла, а затем заменить его новым со свежими добавками оксида кальция.

Вторая стадия производства стали – кипение

Происходит кипение металлической ванны. Начинается постепенно, по мере нагрева до высоких температур. При увеличении температуры интенсивней происходит реакция окисления углерода, протекающая с поглощением теплоты:

Для того чтобы окислить углерод вводят в металл небольшое количество окалины, руды или вдувают кислород. При реакции углерода с оксидом железа, пузырьки оксида углерода выводятся из жидкого металла, и происходит “кипение ванны”. Во время “кипения” сокращается в металле содержание углерода до требуемого количества, температура выравнивается по объему ванны, немного удаляются неметаллические включения, которые прилипают к всплывающим пузырькам CO и газы, которые проникают в пузырьки CO. Все это ведет к увеличению качества металла. А значит, данная стадия – основная в процессе производства стали.

Создаются условия для того чтобы удалить серу. В стали сера находится в форме сульфида – FeS, растворяемого в основном шлаке. Чем будет выше температурный режим, тем больше сульфида железа растворится в шлаке и будет взаимодействовать с оксидом кальция CaO:

Соединение, которое образуется – CaS, растворяется в шлаке, но при этом не растворяется в железе, так что сера выводится в шлак.

Третья стадия производства – раскисление стали

Происходит восстановление оксида железа, который растворен в жидком металле. Увеличение содержания кислорода в металле при плавке необходимо для осуществления окисления примесей, но в уже готовой стали кислород является вредной примесью, потому что понижает механические свойства стали.

Раскисление сталь осуществляется двумя методами: диффузионным и осаждающим.

Диффузионное раскисление происходит благодаря раскислению шлака. В измельчённом виде ферросилиций, ферромарганец и алюминий переносят на поверхность шлака. Эти раскислители, восстанавливают оксид железа, и при этом сокращают содержание его в шлаке. А значит, оксид железа, который растворен в стали переходит в этот шлак. Оксиды, которые образуются при таком процессе, остаются в шлаке, а железо, уже в восстановленном виде, переходит в сталь, а в ней уменьшается содержание неметаллических включений и увеличивается ее качество.

Осаждающее раскисление происходит благодаря введению в жидкую сталь растворимых раскислителей (ферросилиция, ферромарганца, алюминия), которые содержат элементы, обладающие более высоким сродством к кислороду, в сравнении с железом. В конце концов, после раскисления восстанавливается железо и создаются оксиды: SiO2, MnO, Al2O5, имеющие меньшую плотность,в сравнении со сталью, и выводятся в шлак.

В зависимости от уровня раскисления можно выплавлять такие виды стали: – кипящие – не полностью раскислены в печи. Раскисление такой стали продолжается в изложнице при затвердевании слитка, за счет взаимодействия углерода и оксида железа: FeO + C = Fe + CO.

Оксид углерода, который образовался, выводится из стали, обеспечивая удалению водорода и азота из стали, газы выводятся в виде пузырьков, приводя её к кипению. Кипящая сталь не имеет неметаллических включений, поэтому отличается высокой степенью пластичности.

  • спокойные – получается при абсолютном раскислении в ковше и в печи.
  • полуспокойные – отличаются промежуточной раскисленностью между кипящей и спокойной сталями. Частично раскисляется в ковше и в печи, а частично – в изложнице, за счет взаимодействия углерода и оксида желез, которые содержатся в стали.

Легирование стали происходит введением чистых металлов или ферросплавов в определенном количестве в расплав. Легирующие элементы, которые имеют меньше сродство к кислороду, чем у железа (Co, Ni, Cu, Mo), при разливке и плавке не окисляются, и поэтому их вводят в какое-либо время плавки. Легирующие элементы, которые имеют большее сродство к кислороду, чем у железа (Mn, Si, Cr, Al, Ti , V), в металл вводят после раскисления или вместе с ним на окончательном этапе плавки, а иногда и в ковш.

Читайте также:  От чего зависит свариваемость стали

Оборудование для производства и выплавки стали

Для производства стали на сталелитейных заводах должно быть специальное оборудование:

  • аргоновое хозяйство;
  • детали конвертеров (сосуды и несущие кольца конвертера);
  • фильтрация пыли;
  • отсасывание конвертерного газа;
  • индукционные печи (изготовление периферий);
  • дуговые печи (изготовление энергетических опор, стальных частей для горнов, охлаждение электродов);
  • загрузочные бадьи;
  • скрапное отделение;
  • частотные преобразователи для индукционного нагревания;
  • обессеривание стали;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуума;
  • оборудование LF типа;
  • оборудование SL типа;
  • крышки литейных и разливочных ковшей;
  • литейные и разливочные ковши;
  • шиберные затворы;

Оборудование непрерывной разливки стали

  • разливочная поворотная станина для манипуляции с промежуточными ковшами и ковшами;
  • сегменты оборудования непрерывной разливки;
  • вагонетки промежуточных ковшей;
  • аварийные лотки и сосуды;
  • промежуточные ковши и подставки для складывания;
  • пробочный механизм;
  • передвижные мешалки чугуна;
  • охлаждающее оборудование;
  • выводные участки непрерывной разливки;
  • металлургические рельсовые транспортные средства.

Таким образом производство стали – это сложный технологический процесс, сочетающий базовые химические принципы получения железа, в сочетании с технологиями отливки стали.

Основные способы производства стали

Шлаки сталеплавильных процессов.

Роль шлаков в процессе производства стали исключительно велика. Шлаковый режим, определяемый количеством и составами шлака, оказывает большое влияние на качество готовой стали, стойкость футеровки и производительность сталеплавильного агрегата. Шлак образуется в результате окисления составляющих части шихты, из оксидов футеровки печи, флюсов и руды. По свойствам шлакообразующие компоненты можно разделить на кислотные (SiO2; P2O5; TiO2; и др.), основные (CaO; MgO; FeO; MnO и др.) и амфотерные (Al2O3; Fe2O3; Cr2O3; и др.) оксиды. Важнейшими компонентами шлака, оказывающими основное влияние на его свойства, являются оксиды SiO2 и CaO.

Шлак выполняет несколько важных функций в процессе выплавки стали:

Связывает все оксиды (кроме СО), образующиеся в процессе окисления примесей чугуна. Удаление таких примесей, как кремний, фосфор и сера, происходит только после их окисления и обязательного перехода в виде оксидов из металла в шлак. В связи с этим шлак должен быть надлежащим образом подготовлен для усвоения и удержания оксидов примесей;

Во многих сталеплавильных процессах служит передатчиком кислорода из печной атмосферы к жидкому металлу;

В мартеновских и дуговых сталеплавильных печах через шлак происходит передача тепла металлу;

Защищает металл от насыщения газами, содержащимися в атмосфере печи.

Изменяя состав шлака, можно отчищать металл от таких вредных примесей, как фосфор и сера, а также регулировать по ходу плавки содержание в металле марганца, хрома и некоторых других элементов.

Для того, чтобы шлак мог успешно выполнять свои функции, он должен в различные периоды сталеплавильного процесса иметь определенный химический состав и необходимую текучесть (величина обратная вязкости). Эти условия достигаются использованием в качестве шихтовых материалов плавки расчетных количеств шлакообразующих — известняка, извести, плавикового шпата, боксита и др.

Конвертерный способ

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 – 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране – кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 – 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8. 1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3. 0,8 м.

Конвертеры изготовляют емкостью 100. 350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50. 60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения — боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250. 1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Изменение металла по ходу плавки показано (на рис. 2). При продувке происходит окисление углерода и других примесей как непосредственно кислородом дутья, так и оксидом железа FeO. Одновременно образуется активный шлак с необходимым содержанием СаО, благодаря чему происходит удаление серы и фосфора с образованием устойчивых соединений P2O5- ЗСаО и CaS в шлаке.

В момент, когда содержание углерода достигает заданного для выплавляемой марки стали, подачу кислорода прекращают, конвертер поворачивают и выливают вначале сталь, а затем — шлак.

Для уменьшения содержания кислорода сталь при выпуске из конвертера раскисляют, т. е. вводят в нее элементы с большим, чем у железа, сродством к. кислороду (Si, Mn, A1). Взаимодействуя с оксидом железа FeO, они образуют нерастворимые оксиды МпО, SiO2, А1203, переходящие в шлак.

Производительность кислородного конвертера емкостью 300 т достигает 400. 500 т/ч, в то время как производительность мартеновских и электропечей не превышает 80 т/ч. Благодаря высокой производительности и малой металлоемкости кислородно-конвертерный способ становится основным способом производства стали.

Рис.1 Схема кислородного конвертера Рис.2 Схема изменения металла по ходу плавки

Процесс занимает главенствующую роль среди существующих способов массового производства стали. Такой успех кислородно-конвертерного способа заключается в возможности переработки чугуна практически любого состава, использованием металлолома от 10 до 30 %, возможность выплавки широкого сортамента сталей, включая легированные, высокой производительностью, малыми затратами на строительство, большой гибкостью и качеством продукции за небольшой промежуток времени.

При конверторном способе производства, благодаря тому, что окисление фосфора и серы идет одновременно имеется возможность остановить процесс на заданном содержании углерода и получить довольно широкую гамму углеродистых сталей при низком содержании серы и фосфора.

Информация к лекции “Краткая характеристика современных способов производства стали”

Просмотр содержимого документа
«Информация к лекции “Краткая характеристика современных способов производства стали”»

Краткая характеристика современных способов производства стали.

Разливка стали и получения слитков

  • Способы производства стали
  • Способы разливки стали. Строение стального слитка и его дефекты

Способы производства стали:

  • Производство стали в мартеновских печах
  • Производство стали в кислородных конвертерах
  • Производство стали в дуговых электрических печах
  • Производство стали в индукционных электрических печах

Производство стали в мартеновских печах

Мартеновская выплавка является одним из основных способов производства углеродистой конструкционной и инструментальной сталей.

Мартеновская печь представляет собой металлургический агрегат вместимостью до 900 т стали.

В нашей стране применяют двухподовые мартеновские печи, позволяющие экономить топливо благодаря более полному использованию теплоты отработавших газов.

Устройство мартеновской печи

Производство стали в кислородных конвертерах

Еще одним широко применяемым способом производства стали является конверторная выплавка.

Длительность плавки в конвертерах составляет 25..30 мин. Производительность конвертера вместимостью 300 т стали достигает 500 т/ч

Производство стали в дуговых электрических печах

Электроплавильные печи – это металлургические агрегаты, в которых расплавление шихты производится энергией электрической дуги или индукционным током.

Производство стали в индукционных электрических печах

Вакуумная плавка позволяет выпускать сталь с низким содержанием газов и неметаллических включений, а также проводить разливку стали под давлением инертных газов, что значительно повышает плотность слитков.

Специальные способы выплавки высоколегированной стали:

  • Производство стали вакуумно-дуговым переплавом
  • Производство стали электрошлаковым переплавом

Способы разливки стали

Выплавленную сталь из сталелитейных агрегатов выпускают в разливочные ковши, из которых затем разливают в изложницы.

На практике применяют два способа разливки стали в изложницы: сифонный и заливку сверху . Сифонным способом разливают сталь для получения мелких отливок (массой 1…20 т), а при производстве крупных отливок (массой 20…100 т и более) осуществляют заливку сверху.

При сифонной разливке стали и разливке сверху отливка имеет неоднородное строение: усадочные раковины располагаются в верхней головной части, а мелкие раковины (поры) несколько ниже. В поперечном сечении отливки под ее головной частью макроструктура стали также неоднородная: усадочных раковин здесь не наблюдается, но имеется несколько зон с разной структурой.

Читайте также:  Как расплавить сталь в домашних условиях

В целях механизации разливочных работ и повышения качества слитков применяют установки непрерывной разливки .

Схема кристаллического строения слитка

1 – зона столбчатых кристаллов;

2 – зона мелких кристаллов;

3- зона равновесных кристаллов

Строение стального слитка и его дефекты

Залитая в изложницу сталь затвердевает у поверхности и внутри слитка с различной скоростью. На поверхности слитка сначала образуется плотный слой мелких кристаллов, которые затем растут перпендикулярно охлаждающей поверхности изложницы. Внутренняя часть слитка охлаждается медленнее, в ней кристаллы ориентированы в разные стороны. Выше линии АБ образуется пустота –усадочная раковина 1, а ниже этой линии – осевая усадочная рыхлость.

После затвердения стали, залитой в изложницы, в полученном слитке различают следующие зоны:

Строение слитка, залитого в изложницу сверху

I – усадочная раковина;

II – прибыльная часть;

III – зона мелких зерен;

IV – зона вытянутых зерен;

V – зона кристаллов внутренней части слитка;

VI – донная часть слитка

Донную часть 6 слитка, расположенную ниже линии аб удаляют. Для изделий используют только здоровую часть слитка, составляющую 68…75% от его массы.

Ликвацию (неоднородность химического состава отливки) уменьшают разными способами: ускорением затвердевания слитка, соответствующей последующей термической обработкой металла и др.

Поверхностные дефекты слитков трещины, газовые раковины, засоры, плены и другие удаляются механическим путем или газопламенной резкой.

Основы производства чугуна и стали

Производство черных металлов из железной руды – сложный технологический процесс, который может быть условно разделен на две стадии. На первой стадии получают чугун, а на второй – его перерабатывают в сталь.

Чугун выплавляют в доменных печах (рис.1). Исходными материалами для производства чугуна являются железные руды, топливо и флюсы. Железные руды – горные породы содержащие железо в виде химических соединений с кислородом и другими элементами. В состав железных руд, кроме того, входят и другие соединения в виде кремнезема, глинозема, известняка и т. п. (объединяемые общим понятием – “пустая порода”). Обычно для производства чугуна используют магнитный железняк (Fe3O4) с содержанием железа до 70%, красный железняк (Fe2О3 ), содержащий до 65 % железа, и бурый железняк (2Fe2О3 2H2О), содержащий до 60 % железа. Топливом в доменном процессе служит кокс, получаемый при сухой перегонке (сжигание без доступа воздуха) коксующихся каменных углей. Флюсы (плавни) – известняки, доломиты, песчаники применяют для понижения температуры плавления пустой породы и перевода ее и золы топлива в шлак.

Доменная печь представляет собой шахту, снаружи покрытую металлическим кожухом и изнутри футерованную огнеупорным кирпичом. Печь через верхнюю часть, называемую колошником непрерывно загружают шихтой, чередуя слои руды, флюса и топлива. Для поддержания горения топлива в нижнюю часть печи – горн через фурмы подают под давлением нагретый воздух.

Рис.1. Схема доменной печи

– шахта; 2 – колошник; 3 – загрузочное устройство; 4 – металлический кожух; 5 – футеровка;6 – цилиндрическая часть печи; 7 – заплечики; 8 – горн; 9 – шлаковая летка; 10 – чугун;11 – летка для выпуска чугуна; 12 – воздухоподающая труба

Горение топлива – кокса происходит в верхней части горна за счет кислорода воздуха по реакции С + О2 = СО2. Образующийся при этом углекислый газ поднимается вверх по печи и, встречая на своем пути раскаленный кокс, переходит в оксид углерода СО2 + С = 2СО. Оксид углерода восстанавливает оксиды железа до чистого железа, а сам переходит в углекислый газ. Восстановление железа происходит по схеме: Fe 2O3 Fe 3O4 FeO Fe.

Процесс этот может быть представлен следующими химическими уравнениями:

6FeO + 6CO = 6Fe + 6CO

Восстановление железа из его оксидов происходит во время движения шихты под действием собственной массы от верхней части печи к нижней. В нижней части печи при 900-1100°С часть восстановленного железа соединяется с углеродом, в результате чего получается карбид железа Fe3C. Этот процесс называют: науглероживанием. При температуре около 1150°С начинается плавление науглероженного железа, и образовавшийся жидкий чугун стекает в горн печи. Сюда же стекает расплавленный шлак, который как более легкий материал всплывает над чугуном. Расплавленные чугун и шлак периодически выпускают через специальные отверстия – чугунную и шлаковую летки, причем сначала выпускают шлак, а затем – чугун.

Чугун в расплавленном состоянии подают к разливочным машинам для отливки в “чушки” или в специальных ковшах доставляют в сталеплавильные цехи, где его перерабатывают в сталь. Жидкий шлак из доменной печи используют для производства шлаковой пемзы, гранулированного шлака, каменного литья или сливают в отвал. Побочным продуктом доменного производства является колошниковый газ, который применяют для нужд металлургической промышленности.

Процесс производства стали состоит в уменьшении содержания имеющихся в передельном чугуне примесей (углерода, кремния, марганца, серы, фосфора). Указанные примеси при выплавке стали выгорают либо переходят в шлак. Исходными материалами для выплавки стали являются: передельный чугун, стальной лом, ферросплавы, железная руда и флюсы.

Современными способами производства стали являются конвертерный, мартеновский и электроплавильный (в электропечах).

По конвертерному способу сталь получают в печах – конвертерах. Конвертер – стальной футерованный сосуд грушевидной формы, поворачивающийся вокруг горизонтальной оси на двух цапфах. В нижней части конвертера имеются фурменные отверстия для подачи воздуха под давлением 0,2-0,25 МПа (изб.). Жидкий передельный чугун заливают из ковша в конвертер, после чего через фурменные отверстия пропускают воздух, обогащенный кислородом. Под воздействием воздуха в расплавленном чугуне образуется закись железа FeO, которая реагирует с примесями (кремнием, марганцем, фосфором), образуя оксиды, которые переходят в шлак или выгорают, а закись железа при этом восстанавливается до чистого железа. Этот процесс продолжается всего 15-30 мин, что является большим преимуществом данного способа. Емкость современных конвертеров достигает 600 т. Этот способ отливки стали высокопроизводителен и наиболее экономичен.

Конвертерную сталь используют для изготовления строительных профилей, сортовой и листовой стали, проволоки и т.д.

Рис.2. Схема конвертера

– вращающийся грушевидный сосуд; 2 – футеровка; 3 – фурменные отверстия для подачи воздуха;4 – поворотный механизм

Мартеновский способ получения стали в настоящее время наиболее распространен. Мартеновская печь представляет собой агрегат, рабочее пространство которого имеет форму вытянутой в горизонтальном направлении камеры. Нижнюю часть камеры, имеющей вид ванны, называют подом. Его делают набивным из огнеупорных материалов, а стенки и свод печи выкладывают из огнеупорного кирпича. В верхней части имеются каналы, соединяющие рабочую камеру с газовыми и воздушными регенераторами. Емкость современных мартеновских печей до 1000 т.

Твердый или расплавленный чугун с добавкой скрапа (металлолома) или руды плавится в мартене за счет сжигания топлива – смеси колошникового газа или генераторного газа с воздухом. Для повышения теплового эффекта газ и воздух предварительно нагревают в регенераторах, применяют кислородное дутье. Примеси – кремний, марганец и фосфор окисляются закисью железа FeO, образовавшейся в расплаве, переходят в оксиды и удаляются в виде шлака, а закись железа переходит в чистое железо. Серу из расплава удаляют при помощи известняка, вводимого в качестве флюса. Углерод при высоких температурах выгорает. Образующийся в процессе выплавки стали шлак скапливается на поверхности жидкого металла и его периодически удаляют.

Рис.3. Схема мартеновской печи 1 – под; 2 – свод; 3 – регенераторы

Во время выплавки стали, продолжающейся 4 – 8 ч, в ее состав вводят различные добавки – ферросплавы, например феррохром, феррованадий, получая тем самым легированную сталь. Химический состав расплава контролируют путем систематического отбора проб для анализа. После получения стали заданного химического состава ее выпускают в ковш, а из него разливают по изложницам – чугунным или стальным формам.

Мартеновская сталь отличается от конвертерной более высоким качеством. Ее широко применяют для изготовления строительных конструкций (ферм, подкрановых балок, мостов, рельсов и др.), а также для высокопрочной арматуры.

Электроплавка – наиболее совершенный способ производства специальных и высококачественных сталей. Сталь выплавляют в дуговых или индукционных электропечах. Наиболее распространены дуговые электропечи емкостью до 200 т.

В качестве сырьевой шихты для электроплавки стали используют как стальной скрап и железную руду, так и жидкие стали, поступающие из мартеновской печи или конвертера. Кроме того, в состав шихты вводят флюсы и легирующие добавки. Источником тепла является электродуга, образующаяся между вертикально установленными угольными электродами и расплавленным металлом. По существу протекающих процессов электроплавка не отличается от мартеновского способа производства стали. Однако существенным недостатком электроплавки является низкая производительность и высокая себестоимость стали.

В последние годы начинают применять комбинированные способы производства стали с использованием последовательной выплавки стали в кислородных конвертерах, а затем в основных мартеновских печах, где происходит получение стали заданного химического состава. Для сокращения расхода электроэнергии при производстве стали вначале используют для нагрева и расплавления мартеновскую печь, а затем для окончательной доводки стали до заданных свойств – электропечь.

Читайте также:  Гост 8639 82 трубы стальные квадратные сортамент

Перспективна технология получения губчатого железа непосредственно из руд путем продувки их под давлением водородом или смесью водорода с оксидом углерода с последующим выделением железа.

Чугунное литье

Свойства и марки чугуна. В зависимости от содержания примесей и скорости охлаждения получают два основных вида чугуна: белый и серый. Эти наименования соответствуют цвету чугуна. Белый чугун имеет высокую твердость, но он весьма хрупок; его применяют для получения ковкого чугуна и стали. Серый чугун в расплавленном состоянии обладает хорошей текучестью и легко заполняет формы, дает малую усадку при затвердевании, а также легко поддается механической обработке. Серый чугун используют для литья разнообразных строительных изделий. Разновидность серого чугуна – модифицированный черный чугун. Его получают за счет введения в жидкий чугун добавок (модификаторов). Этот чугун обладает повышенными механическими свойствами.

Серый, а также модифицированный чугун, маркируют буквами СЧ, например, СЧ12-28, СЧ18-36, СЧ28-48 и СЧ32-52. Первая цифра марки чугуна показывает допустимый предел прочности при растяжении, а вторая – при изгибе (в кгс/мм°). Серый чугун, используемый для отливки изделий, работающих главным способом на сжатие (колонны, опорные подушки, канализационные трубы, тюбинги и др.) характеризуется пределом прочности при растяжении 120 – 210 и при изгибе 280 – 400 МПа. Значительно реже в строительстве используют высокопрочные и легированные чугуны.

Чугунные изделия. Чугунные литые изделия изготовляют различными способами, среди которых наиболее простым является литье в формы. Прогрессивные формы литья чугуна – под давлением и центробежный. Путем отливки из серого чугуна получают элементы строительных конструкций, работающих на сжатие (колонны, опорные подушки, арки, своды, тюбинги метрополитена, плиты для полов промышленных зданий и т. п.). Серый чугун используют для литья печных приборов (топочные дверцы, задвижки, колосники, решетки), а также архитектурно-художественных изделий.

Основы технологии получения стали

Первой ступенью получения стали является выплавка из руды чугуна. Последовательность технологических процессов получения чугуна и стали и изготовления из них строительных конструкций показана на рис. 1.

Выплавка чугуна из руды производится в доменных печах. Материалами, участвующими в этом процессе, являются железные руды, флюсы (плавни) и топливо.

Железные руды представляют собой окислы железа, т. е. различные соединения железа с кислородом. Обычно в составе руды имеются также и другие, не содержащие окислов железа, минералы, которые в металлургии называются «пустой породой».

Задачей доменного процесса является восстановление железа, т. е. удаление кислорода из окислов железа.

Одновременно с восстановлением железа удаляются пустые породы. Так как эти породы тугоплавки, к ним добавляют флюсы, т. е. вещества, образующие с ними легкоплавкие соединения. Пустыми породами в большинстве случаев является кремнезем (SiO2) и глинозем (Аl2О3). В качестве флюса обычно добавляют известняк (СаСО3). Сплавы флюсов с пустыми породами, являющимися отходами доменного процесса, называются доменными шлаками. Их удаляют из доменной печи в расплавленном состоянии.

В доменных печах в качестве топлива применяют в большинстве случаев каменноугольный кокс — продукт сухой перегонки коксующихся сортов каменного угля. Благодаря этому топливу достигается температура, необходимая не только для восстановления железа, но и для получения расплавленного чугуна и шлака.

Чугуны, получаемые при доменной плавке, подразделяются на литейные, применяемые для отливки труб, радиаторов и других изделий; передельные, идущие для производства стали, и специальные.

Основной задачей при переделке чугуна на сталь является понижение содержания примесей (С, Mn, Si, Р, S). Это достигается переводом примесей в соединения, не растворяющиеся в расплавленном металле, переходящие в шлак и удаляемые вместе с ним.

Необходимо иметь в виду, что при высоких температурах плавления металла требуется специальная футеровка (облицовка) изнутри металлического кожуха печи, иначе он начнет плавиться или даст значительные изменения формы. Материал футеровки, будучи огнеупорным, тем не менее в некоторой степени участвует в происходящих во время плавки реакциях образования шлака, поэтому его состав имеет большое значение. Для футеровки металлургических печей применяют следующие материалы: шамотный кирпич и шамотные изделия (шамотом называют предварительно обожженную огнеупорную глину); дннасовый кирпич и изделия, получаемые путем обжига измельченных кварцевых пород с известковой связкой; магнезитовый кирпич и порошок из обожженного магнезита; доломитовый кирпич и порошок из обожженного доломита.


Рис. 1. Технологический процесс получения чугуна и стали и изготовления из них строительных конструкций

В каждом из способов выплавки стали, приведенных на рис. 1. задача удаления примесей решается различно.


Рис 2. Схема конвертера: 1 — огнеупорная футеровка; 2 — воздухопровод; 3 — отверстия в днище для подачи воздуха; 4 — рейка поворотного механизма печи

При конвертерном способе применяют специальную печь грушевидной формы, вращающуюся на горизонтальной оси (рис. 2). В настоящее время по этому способу выплавляют в среднем 10% стали.

После того как в конвертер залит жидкий чугун (с частичным заполнением объема), сквозь него через отверстия в днище продувают под давлением воздух. Окисляя железо, кислород воздуха образует соединение FeO, называемое закисью железа, растворимое в жидком металле, реагирующее на примеси и переходящее в сталь. Переход примесей в шлак уменьшает их содержание в выплавляемом металле.

Недостаток конвертерного способа — повышение содержания в стали азота, получающееся вследствие продувания воздуха. Кроме того, конвертерный способ не позволяет перерабатывать большое количество стального лома.


Рис. 3. Разрез мартеновской печи: каналы для подогретого воздуха и газа; 2 – свод печи; 3 – рабочее пространство печи, в котором плавится сталь

По мартеновскому способу плавка стали ведется на поду пламенной отражательной печи (рис. 3), верхняя часть рабочего пространства которой ограничена сводом, отражающим тепловой поток. Для получения необходимой температуры в рабочем пространстве печи сжигается в смеси с воздухом горючее (в большинстве случаев газ).

Мартеновский способ является универсальным, позволяющим получать стали разного качества с добавкой при выплавке их чугунного и стального лома (так называемого скрапа) и даже железных руд.


Рис 4. Дуговая печь для электроплавки: 1 – электроды; 2 – механизм для установки электродов; 3 – полозья, на которых поворачивается печь; 4 – заслонка выпускного окна; 5 – загрузочное окно

Электроплавка, производящаяся в дуговой печи (рис. 4), является современным и наиболее совершенным способом выплавки стали. Достоинства такой печи состоят в том, что в ней достигаются очень высокие температуры, которые легко регулировать, а следовательно, и регулировать весь процесс. Доступ воздуха в печь ограничен. Сталь получается лучшего качества, чем при других процессах, вследствие отсутствия печных окисляющих газов и соприкосновения металла с топливом.

Высокая температура при электроплавке создается электрической дугой между угольными электродами и расплавленным металлом. Напряжение тока, требующееся при плавке, не превышает 150 в при силе тока, доходящей до 10 тыс. а. По размерам применения электроплавки и ее удельному весу в металлургической промышленности Советский Союз занимает первое место в мире.

В результате плавки и разливки металла по формам получаются стальные слитки. Дальнейшим этапом является горячая механическая их обработка для получения изделии определенного сечения и длины, а в некоторых случаях и для улучшения механических свойств стали.

После плавки и разливки полученный металл может иметь различные дефекты (пороки). К ним относятся: усадочные раковины, которые могут распространяться в глубь слитка; неравномерное выделение (скопление) примесей (фосфор, углерод и сера) при затвердевании (обычно примеси скапливаются у стенок усадочных раковин); газовые пузыри, образующиеся вследствие того, что газы, появляющиеся в процессе раскисления стали, не успевают выделяться при ее затвердевании; плены, появляющиеся на поверхности металла от брызг или заливин при разливке в формы; неметаллические включения, представляющие собой, как правило, частицы шлаков; трещины от быстрого и неравномерного охлаждения металла и больших внутренних напряжений, возникающих в результате резких изменений температуры.

Основными видами горячей механической обработки стали являются прокатка и ковка. Поскольку арматурная сталь изготовляется прокаткой, в дальнейшем изложении ковка не освещается.

При прокатке нагретый слиток пропускают между вращающимися валками прокатного стана. В зависимости от формы рабочей поверхности валков могут быть получены изделия различных профилей.

При горячей механической обработке структура металла может изменяться, причем могут образовываться различные дефекты. Например, если обработка производится при высоких температурах, сталь делается крупнозернистой и хрупкой. Усадочные пустоты и газовые пузыри сплющиваются и ведут к образованию внутренних трещин. При прокатке на неравномерных скоростях и слишком больших обжимах также могут появиться трещины и расслоения.

Для обнаружения дефектов необходимо производить наружный осмотр изделий, а также исследование так называемого шлифа металла. Исследование производится с помощью микроскопа и с применением различных химических добавок, которые могут растворять или окрашивать отдельные частицы металла.

Ссылка на основную публикацию
Adblock
detector