С какой целью производится нормализация стальных конструкций - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

С какой целью производится нормализация стальных конструкций

Для устранения крупнозернистой структуры стали проводят … нормализацию

17. Отжиг, в процессе которого распад аустенита на ферритно-цементитную смесь происходит при постоянной температуре, называется … изотермическим

18. Cорбит имеет следующий фазовый состав:феррит + перлит

19. Для снятия наклепа проводят рекристаллизационный отжиг.

Выдержку после нагрева стали до заданной температуры при полном отжиге и нормализации проводят с целью …завершения фазовой перекристаллизации

завершения фазовой перекристаллизации
начала фазовой перекристаллизации
завершения диффузионного превращения аустенита в перлит
увеличения прокаливаемости

Решение:
Выдержку после нагрева стали до заданной температуры при полном отжиге и нормализации проводят для полного завершения фазовой перекристаллизации и диффузионного выравнивания содержания углерода в аустените.

Неполный отжиг заэвтектоидных сталей проводят обычно с целью …получения зернистого перлита

получения зернистого перлита
устранения дендритной ликвации
снятия остаточных напряжений
получения мартенситной структуры

Решение:
Неполный отжиг заэвтектоидных сталей, называемый еще сфероидизацией, проводят обычно с целью получения в структуре зернистого перлита. Сталь с зернистым перлитом имеет более низкие твердость, временное сопротивление, более высокую пластичность, лучше обрабатывается резанием.

Термическая обработка, при проведении которой нагревание стали проводится до полной фазовой перекристаллизации, – это …нормализация

нормализация
рекристаллизационный отжиг
неполный отжиг
отпуск

Решение:
Нормализация – термообработка, при которой сталь охлаждается не в печи, как при отжиге, а на воздухе в цехе. Нагревание ведется до полной перекристаллизации, в результате сталь приобретает мелкозернистую, однородную структуру. Твердость, прочность стали после нормализации выше, чем после отжига.

Арзамасов, Б. Н. Материаловедение : учеб. / Б. Н. Арзамасов [и др.]. – М. : Изд-во МВТУ им. Н. Э. Баумана, 2003. – 648 с.

Материаловедение и технология конструкционных материалов : учеб. / под ред. В. Б. Арзамасова, А. А. Черепахина – М. : Академия, 2009. – 448 с.

Материаловедение. Технология конструкционных материалов : учеб. / под ред. В. С. Чередниченко. – М. : ОМЕГА-Л, 2007. – 752 с.

Нормализацию с целью устранения сплошной цементитной сетки по границам зерен перлита проводят в заэвтектоидных сталях.

заэвтектоидных
легированных
доэвтектоидных
эвтектоидных

Решение:Нормализации с целью устранения сплошной цементитной сетки по границам зерен перлита подвергают заэвтектоидные стали. Сталь нагревают до температуры Аcст + (30-50)°С и охлаждают на воздухе.

ЗАДАНИЕ N 5
Термическая обработка, которая проводится с целью перевода стали в состояние, близкое к равновесному, с минимальной плотностью дислокаций, по возможности низкой твердостью и высокой пластичностью, называется …отжигом

отжигом
закалкой
нормализацией
отпуском

Решение:
Термическая обработка, которая проводится с целью перевода стали в состояние, близкое к равновесному, с минимальной плотностью дислокаций, по возможности низкой твердостью и высокой пластичностью, называется отжигом. Получение структуры, близкой к равновесной, с минимальным количеством дефектов обеспечивается медленным охлаждением сплава с температуры нагрева.

ЗАДАНИЕ N 6
Термическая обработка, заключающаяся в нагреве доэвтектоидной стали до температуры на 30–50 о С выше линии Ас3, выдержке и охлаждении с печью, называется …полным отжигом

полным отжигом
диффузионным отжигом
неполной закалкой
нормализацией

Решение:
Термическая обработка, заключающаяся в нагреве доэвтектоидной стали до температуры на 30–50 о С выше линии Ас3, выдержке и охлаждении с печью, называется полным отжигом.
При диффузионном отжиге для интенсификации диффузионных процессов сталь нагревают до температур 1000–1100 о С.
При закалке углеродистые стали обычно охлаждают в воде, при нормализации – на воздухе.

ЗАДАНИЕ N 7
Выдержку после нагрева стали до заданной температуры при полном отжиге и нормализации проводят с целью …завершения фазовой перекристаллизации

завершения фазовой перекристаллизации
начала фазовой перекристаллизации
завершения диффузионного превращения аустенита в перлит
увеличения прокаливаемости

Решение:
Выдержку после нагрева стали до заданной температуры при полном отжиге и нормализации проводят для полного завершения фазовой перекристаллизации и диффузионного выравнивания содержания углерода в аустените.

После полного отжига структура стали 35 состоит из …феррита и перлита

феррита и перлита
перлита и цементита
перлита
мартенсита

Решение:
После полного отжига стали приобретают структуры, близкие к равновесным. Сталь 35 является доэвтектоидной, поэтому в отожженном состоянии имеет феррито-перлитную структуру.

При неполном отжиге сплав нагревается выше линии …Ас1

Ас1
Ас3
Асm
PQ

Решение:
При неполном отжиге сплав нагревается выше линии PSK (Ас1), но ниже GSE и полной перекристаллизации не происходит.

Структура доэвтектоидной стали после полного отжига состоит из …феррита и перлита

феррита и перлита
перлита и цементита
троостита и феррита
мартенсита и остаточного аустенита

Решение:
Структура низкоуглеродистой стали после нормализации феррито-перлитная, такая же, как и после отжига, а у средне- и высокоуглеродистой стали – сорбитная; нормализация может заменить для первой – отжиг, а для второй – закалку с высоким отпуском.

Арзамасов, Б. Н. Материаловедение : учеб. / Б. Н. Арзамасов [и др.]. – М. : Изд-во МВТУ им. Н. Э. Баумана, 2003. – 648 с.
Материаловедение и технология конструкционных материалов : учеб. / под ред. В. Б. Арзамасова, А. А. Черепахина – М. : Академия, 2009. – 448 с.
Материаловедение. Технология конструкционных материалов : учеб. / под ред. В. С. Чередниченко. – М. : ОМЕГА-Л, 2007. – 752 с.

При нормализации стали ее охлаждение с температуры нагрева производят … на воздухе

на воздухе
в воде
в подогретом масле
с печью

Решение:
Нормализация – вид термической обработки, при которой
сталь нагревают до полной фазовой перекристаллизации (доэвтектоидные стали на 30–50 о выше АС3, заэвтектоидные – на 30–50 о выше АСm), а затем охлаждают на воздухе.

Разновидностями отжига, проведение которых не связано с осуществлением фазовой перекристаллизации стали, являются …диффузионный, рекристаллизационный, для снятия остаточных напряжений

диффузионный, рекристаллизационный, для снятия остаточных напряжений
гомогенизационный, неполный, изотермический
неполный, полный, нормализационный
полный, рекристаллизационный, на зернистый перлит

Решение:
Различают отжиг первого рода и второго рода. Отжиг первого рода происходит вне зависимости от фазовых (полиморфных) превращений. Если они и имеют место, то не оказывают решающего влияния на конечную структуру сталей.
Разновидностями отжига I рода являются диффузионный, рекристаллизационный, отжиг и отжиг для снятия остаточных напряжений

Структура, получаемая в результате нормализации средне- и высокоуглеродистой стали, называется …сорбитом

сорбитом
трооститом
перлитом
бейнитом

Решение:
В результате нормализации средне- и высокоуглеродистой стали образуется сорбит.

Неполный отжиг стали У10 проводят при температуре 740–760 о С.

740–760
840–860
650–670
940–970

Решение:
Неполный отжиг заэвтектоидных сталей проводят при температурах, немного (обычно на 10–30 о С) превышающих точку А1, что составляет около 740–760 о С.

Структура низкоуглеродистой стали после нормализации состоит из …феррита и перлита

феррита и перлита
перлита и цементита
сорбита и троостита
перлита и сорбита

Решение:
Структура низкоуглеродистой стали после нормализации феррито-перлитная, такая же, как и после отжига, а у средне- и высокоуглеродистой стали – сорбитная; нормализация может заменить для первой – отжиг, а для второй – закалку с высоким отпуском.

Арзамасов, Б. Н. Материаловедение : учеб. / Б. Н. Арзамасов [и др.]. – М. : Изд-во МВТУ им. Н. Э. Баумана, 2003. – 648 с.
Материаловедение и технология конструкционных материалов : учеб. / под ред. В. Б. Арзамасова, А. А. Черепахина – М. : Академия, 2009. – 448 с.
Материаловедение. Технология конструкционных материалов : учеб. / под ред. В. С. Чередниченко. – М. : ОМЕГА-Л, 2007. – 752 с.

Для устранения крупнозернистой структуры стали проводят …нормализацию

нормализацию
улучшение
диффузионный отжиг
рекристаллизационный отжиг

Решение:
Для устранения крупнозернистой структуры стали используют нормализацию: доэвтектоидные стали нагревают на 30–50 о выше АС3, заэвтектоидные – на 30–50 о выше АСm (до полной фазовой перекристаллизации), а затем охлаждают на воздухе.

ЗАДАНИЕ17
Тема: Отжиг и нормализация стали

Отжиг, в процессе которого распад аустенита на ферритно-цементитную смесь происходит при постоянной температуре, называется … изотермическим

изотермическим
рекристаллизационным
полным
диффузионным

Решение:
Отличительной особенностью изотермического отжига является то, что при его проведении распад аустенита на ферритно-цементитную смесь происходит при постоянной температуре. При других видах отжига такой распад происходит в период охлаждения в условиях непрерывного снижения температуры.

Арзамасов, Б. Н. Материаловедение : учеб. / Б. Н. Арзамасов [и др.]. – М. : Изд-во МВТУ им. Н. Э. Баумана, 2003. – 648 с.

Материаловедение и технология конструкционных материалов : учеб. / под ред. В. Б. Арзамасова, А. А. Черепахина – М. : Академия, 2009. – 448 с.

Материаловедение. Технология конструкционных материалов : учеб. / под ред. В. С. Чередниченко. – М. : ОМЕГА-Л, 2007. – 752 с.

ЗАДАНИЕ18
Cорбит имеет следующий фазовый состав:феррит + перлит

феррит + перлит

Перлит, сорбит закалки и троостит закалки – это смеси феррита и цементита различной степени дисперсности, образующиеся в процессе диффузионного распада аустенита. Чем больше переохлаждение при распаде аустенита, тем дисперснее полученная смесь.

ЗАДАНИЕ19
Для снятия наклепа проводят рекристаллизационный отжиг.

Основы материаловедения

Тесты по основам материаловедения. Свойста металлов обеспечивающих возможность их успешной обработки давлением.

Просмотр содержимого документа
«Основы материаловедения»

1. Какое из перечисленных свойств металлов обеспечивает возможность их

успешной обработки давлением:

1. высокая прочность

2. высокая теплопроводность

3. высокое электросопротивление

4. высокая пластичность

5. хорошие литейные свойства

2. Каково максимальное (теоретически) содержание углерода в сталях (в %):

3. Каково основное достоинство быстрорежущих сталей:

1. высокая твердость

2. коррозионная стойкость

3. высокая прочность

4. низкая стоимость

5. высокая теплостойкость

4. Какая термическая обработка применяется для придания ответственным

стальным изделиям оптимальных механических и эксплуатационных свойств:

4. закалка + отпуск

5. горячая пластическая деформация

5. Какая характерная особенность баббита, серого чугуна и свинцовой бронзы

обусловливает возможность их применения для подшипников скольжения:

1. гетерогенная (неоднородная) структура

2. высокая твердость

3. низкая твердость

4. высокая пластичность

5. низкая температура плавления

6. Какое из перечисленных свойств (параметров) в наибольшей степени

характеризует сопротивление материала хрупкому разрушению:

2. предел прочности

3. относительное удлинение

4. ударная вязкость

7. Какая технология применяется для получения изделий из ковкого чугуна:

1. холодная штамповка

2. горячая пластическая деформация

4. литьё с применением модифицирования

5. длительный отжиг отливок из белого чугуна

8. Из какого сплава следует изготовить режущи хирургический инструмент

9. Какой вид термической обработки необходим для полной ликвидации

наклепа в металле:

1. низкий отпуск

3. рекристаллизационный отжиг

10. Какой из перечисленных сплавов принципиально не упрочняется

11. Какой процесс приводит к полному возвращению свойств наклепанного

металла в исходное (до деформации) состояние:

12. Какова цель модифицирования высокопрочных чугунов:

1. измельчение пластинок графита

2. получение перлитной структуры металлической основы

3. придание графитным включениям шаровидной формы

4. уменьшение количества цементита в структуре

5. устранение ледебурита в структуре

13. Какую марку стали следует предпочесть для изготовления недорогого

изделия методом холодной штамповки:

14. Какую структуру должна иметь ответственная деталь из среднеуглеродистой

стали, работающая при динамических (ударных) нагрузках:

2. феррит + перлит

3. мартенсит + цементит вторичный

4. мартенсит отпуска

5. сорбит отпуска

15. Какая заключительная операция термической обработки сообщает сплаву

Д16 максимальную прочность:

2. низкий отпуск

3. искусственное старение

4. естественное старение

5. рекристаллизационный отжиг

16. Какой тип решетки имеет железо при комнатной температуре:

2. простая кубическая

3. объемноцентрированная кубическая

4. гранецентрированная кубическая

17. С какой из перечисленных структур чугун должен обладать наибольшей

1. шаровидный графит (Г) + феррит (Ф)

2. шаровидный Г + перлит (П)

3. пластинчатый Г + П

4. хлопьевидный Г + Ф + П

5. хлопьевидный Г + Ф

18. Какой химический элемент преобладает в сталях:

19. Какая фаза должна обязательно присутствовать в стали при температуре

её нагрева под закалку:

20. Какую структуру имеют латуни, обладающие наибольшей пластичностью:

4. однофазную аустенитную

5. однофазную ферритную

21. Как изменяются твердость и пластичность углеродистых сталей с

увеличением содержания в них углерода:

1. твердость и пластичность растут

2. твердость и пластичность падают

3. твердость растет, пластичность падает

4. твердость падает, пластичность растет

5. твердость растет, пластичность не изменяется

22. Какова основная структурная составляющая углеродистых сталей в

равновесном (отожженном) состоянии при комнатной температуре:

23. По каким из перечисленных свойств серые чугуны выгодно отличаются

от углеродистых сталей:

2. антифрикционные свойства

3. литейные свойства

4. обрабатываемость резанием

24. Как изменяется прочность и пластичность стали с повышением температуры отпуска:

1. прочность и пластичность увеличиваются

2. прочность растет, пластичность падает

3. прочность падает, пластичность растет

4. прочность не изменяется, пластичность растет

5. прочность и пластичность уменьшаются

25. Какой из перечисленных сплавов следует использовать для литых деталей

самолетов, переносных приборов и т.п.

1. Что такое наклеп (нагартовка)? Это:

1. упругая деформация

2. пластическое деформирование металла

3. холодная пластическая деформация

4. горячая пластическая деформация

5. упрочнение металла в результате холодной пластической деформации

2. Укажите все кристаллические фазы, присутствующие в железоуглеродистых

3. Какую марку стали следует использовать для изготовления инструмента,

обрабатывающего детали на больших скоростях резания:

4. Какая обработка стальных изделий называется улучшением:

1. закалка + низкий отпуск

2. высокий отпуск

3. закалка + высокий отпуск

4. шлифовка поверхности

Читайте также:  Какая сталь используется для изготовления ножей

5. дробеструйная обработка

5. Какой из перечисленных химических элементов обязательно присутствует

6. Какие дефекты кристаллической решетки обеспечивают высокую

3. атомы примесей

4. дислоцированные (междоузельные) атомы

5. границы зерен

7. Перечислите все типовые структуры металлической основы различных

видов серых чугунов:

3. феррит + перлит

4. ледебурит + цементит первичный

8. Какую марку стали следует предпочесть для сварных конструкций,

работающих в агрессивных средах:

9. Какая структура получается при полной закалке доэвтектоидных сталей:

1. мартенсит + цементит вторичный

3. феррит + перлит

4. мартенсит + феррит

10. Каково максимально возможное содержание Zn (в %) в однофазных

11. Какое из перечисленных утверждений неверно? Холодная пластическая деформация:

1. повышает прочность металла

2. повышает электросопротивление

3. снижает пластичность

4. повышает ударную вязкость

5. повышает твердость

12. Наличием какой фазы в структуре серые чугуны отличаются от белых

13. Что такое теплостойкость сплава:

1. способность выдерживать высокие температуры

2. способность не изменять размеры изделия при нагревании

3. способность сохранять высокую твердость при длительном нагревании

4. способность не окисляться при высоких температурах

14. Какая структура обеспечивает максимальную твердость доэвтектоидной

1. перлит + феррит

3. мартенсит отпуска

5. сорбит отпуска

15. Какие две операции и в какой последовательности используются для

эффективного упрочнения сплавов типа дуралюмин:

4. обработка холодом

16. Какой материал следует использовать для обшивки самолетов:

2. углеродистая сталь

3. высокопрочный чугун

17. Укажите фазы, из которых формируется равновесная структура

углеродистых сталей и белых чугунов при нормальных температурах:

18. Укажите, какую структуру должна иметь сталь У12 после грамотно

1. перлит + цементит вторичный (П+Ц II)

3. аустенит + Ц II

19. Измерение какого механического свойства используется обычно для

контроля качества термической обработки:

4. ударная вязкость

20. Какой из перечисленных сплавов успешно используется в качестве

подшипникового (антифрикционного) материала:

21. В чем причина роста твердости сталей в равновесном (отожженном)

состоянии при увеличении содержания в них углерода:

1. уменьшается размер зерна

2. увеличивается наклеп

3. в структуре появляется ледебурит

4. возрастает количество цементита в структуре

5. при большом количестве углерода в структуре появляется мартенсит

22. Какой из перечисленных материалов обладает наибольшей пластичностью:

1. эвтектоидная сталь

2. доэвтектоидная сталь

3. заэвтектоидная сталь

4. доэвтектический белый чугун

5. техническое железо

23. Какой химический элемент (и в каком количестве) делает сталь

24. Расположите необходимые операции обработки стальных шестерен

в правильной последовательности:

3. высокий отпуск

4. средний отпуск

5. низкий отпуск

25. Укажите два наиболее важных достоинства сплавов типа дуралюмин,

обусловивших их широкое применение в качестве конструкционных

1. высокая прочность

2. высокая твердость

3. хорошая ударная вязкость

4. высокая удельная прочность

5. коррозионная стойкость

(ПО1): 4 (высокая пластичность)

ПО3: 5 (высокая теплостойкость)

ПО4: 4 (закалка +отпуск) т.к. обеспечивает оптимальное сочетание прочности, твердости и пластичности, ударной вязкости.

ПО5: 1 (гетерогенная структура) – такая структура, состоящая из мягких и твердых структурных составляющих, обеспечивает хорошее удержание смазки в зоне трения.

ПО6: 4 (ударная вязкость)

ПО7: 5 (длительный отжиг отливок из белого чугуна)

ПО8: 4 (40Х13) ПО9: 3 (рекристаллизационный отжиг) ПО10: 2 (АМц) ПО11: 4 (рекристаллизация) ПО12: 3 (придание графитным включениям шаровидной формы) ПО13: 1 (сталь 08 с минимальным содержанием углерода) ПО14: 5 (сорбит отпуска или зернистый сорбит) ПО15: 4 (естественное старение) ПО16: 3 (объемноцентрированная кубическая ) ПО17: 2 (шаровидный Г + П – высокопрочный чугун на перлитной основе) ПО18: 3 (железо) ПО19: 2 – аустенит, т.к. в результате закалки он превращается в мартенсит, обеспечивающий максимальную твердость, что является целью закалки. ПО20: 1 (однофазную ) ПО21: 3 (твердость растет, пластичность падает) ПО22: 3 (перлит) ПО23: по всем, кроме 5 (прочность) ПО24: 3 (прочность падает, пластичность растет) ПО25: 4 (силумин – литейный Al – сплав)

Правильный ответ II ПО1: 5 (упрочнение металла в результате холодной пластической деформации) ПО2: 2, 3, 5 (феррит, цементит, аустенит) ПО3: 4 (Р6М5) ПО4: 3 (закалка + высокий отпуск) ПО5: 3 (Zn) ПО6: 2 (дислокации) ПО7: 1, 3, 5, (феррит, феррит + перлит, перлит) ПО8: 3 (12Х18Н10Т) ПО9: 2 (мартенсит) получаемый в результате закалки стали. ПО10: 4 (39 % Zn) ПО11: 4 (повышает ударную вязкость) ПО12: 2 (графит) ПО13: 3 (способность сохранять высокую твердость при длительном нагревании) ПО14: 4 (мартенсит) ПО15: 3, 5 (закалка + старение) ПО16: 4 – дуралюмин, т.к. он обладает высокой удельной прочностью (отношение прочности к удельному весу), хорошей коррозионной стойкостью и деформируемостью. ПО17: 2, 3 (феррит и цементит) ПО18: 4 (М + Ц II) ПО19: 2 (твердость) ПО20: 3 (БрС30 – свинцовая бронза) ПО21:4 (возрастает количество цементита в структуре) ПО22: 5 (техническое железо) ПО23: 3 (Cr в количестве 13%) ПО24: 2,1,5 (цементация – закалка – низкий отпуск) ПО25: 4.5 (высокая удельная прочность и коррозионная стойкость)

Виды термообработки

Термическая обработка (термообработка) стали, цветных металлов — процесс изменения структуры стали, цветных металлов, сплавов при нагревании и последующем охлаждении с определенной скоростью.
Термическая обработка (термообработка) приводит к существенным изменениям свойств стали, цветных металлов, сплавов. Химический состав металла не изменяется.

Виды термической обработки стали

Отжиг

Отжиг — термическая обработка (термообработка) металла, при которой производится нагревание металла, а затем медленное охлаждение. Эта термообработка (т. е. отжиг) бывает разных видов (вид отжига зависит от температуры нагрева, скорости охлаждения металла).

Закалка

Закалка — термическая обработка (термообработка) стали, сплавов, основанная на перекристаллизации стали (сплавов) при нагреве до температуры выше критической; после достаточной выдержки при критической температуре для завершения термической обработки следует быстрое охлаждение. Закаленная сталь (сплав) имеет неравновесную структуру, поэтому применим другой вид термообработки — отпуск.

Отпуск

Отпуск — термическая обработка (термообработка) стали, сплавов, проводимая после закалки для уменьшения или снятия остаточных напряжений в стали и сплавах, повышающая вязкость, уменьшающая твердость и хрупкость металла.

Нормализация

Нормализация — термическая обработка (термообработка), схожая с отжигом. Различия этих термообработок (нормализации и отжига) состоит в том, что при нормализации сталь охлаждается на воздухе (при отжиге — в печи).

Нагрев заготовки

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда. Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Углеродистые стали при нагреве теряют углерод с поверхностного слоя в 2-4 мм. Это грозит металлу уменьшением прочности, твердости стали и ухудшается закаливание. Особенно пагубно обезуглероживание для поковок небольших размеров с последующей закалкой.

Заготовки из углеродистой стали с сечением до 100 мм можно быстро нагревать и потому их кладут холодными, без предварительного прогрева, в печь, где температура 1300°С. Во избежание появлений трещин высоколегированные и высокоуглеродистые стали необходимо нагревать медленно.

При перегреве металл приобретает крупнозернистую структуру и его пластичность снижается. Поэтому необходимо обращаться к диаграмме «железо-углерод», где определены температуры для начала и конца ковки. Однако перегрев заготовки можно при необходимости исправить методом термической обработки, но на это требуется дополнительное время и энергия. Нагрев металла до еще большей температуры приводит к пережогу, от чего происходит нарушение связей между зернами и такой металл полностью разрушается при ковке.

Пережог

Пережог — неисправимый брак. При ковке изделий из низкоуглеродистых сталей требуется меньше число нагревов, чем при ковке подобного изделия из высокоуглеродистой или легированной стали.

При нагреве металла требуется следить за температурой нагрева, временем нагрева и температурой конца нагрева. При увеличении времени нагрева — слой окалины растет, а при интенсивном, быстром нагреве могут появиться трещины. Известно из опыта, что на древесном угле заготовка 10-20 мм в диаметре нагревается до ковочной температуры за 3-4 минуты, а заготовки диаметром 40-50 мм прогревают 15-25 минут, отслеживая цвет каления.

Химико-термическая обработка

Химико-термическая обработка (ХТО) стали — совокупность операций термической обработки с насыщением поверхности изделия различными элементами (углерод, азот, алюминий, кремний, хром и др.) при высоких температурах.

Поверхностное насыщение стали металлами (хром, алюминий, кремний и др.), образующими с железом твердые растворы замещения, более энергоемко и длительнее, чем насыщение азотом и углеродом, образующими с железом твердые растворы внедрения. При этом диффузия элементов легче протекает в решетке альфа-железо, чем в более плотноупакованной решетке гамма-железо.

Химико-термическая обработка повышает твердость, износостойкость, кавитационную, коррозионную стойкость. Химико-термическая обработка, создавая на поверхности изделий благоприятные остаточные напряжения сжатия, увеличивает надежность, долговечность.

Цементация стали

Цементация стали — химико-термическая обработка поверхностным насыщением малоуглеродистой (С табл.1

Температура, °СЦвета каленияТемпература, °СЦвета каления1600Ослепительно бело-голубой850Светло-красный1400Ярко-белый800Светло-вишневый1200Желто-белый750Вишнево-красный1100Светло-белый600Средне-вишневый1000Лимонно-желтый550Темно-вишневый950Ярко-красный500Темно-красный900Красный400Очень темно-красный (видимый в темноте)

Тонкая пленка окислов железа, придающая металлу различные быстро меняющиеся цвета — от светло-желтого до серого. Такая пленка появляется, если очищенное от окалины стальное изделие нагреть до 220°С; при увеличении времени нагрева или повышении температуры окисная пленка утолщается и цвет ее изменяется. Цвета побежалости одинаково проявляются как на сырой, так и на закаленной стали.

При низком отпуске (нагрев до температуры 200-300° ) в структуре стали в основном остается мартенсит, который, однако, изменяется решетку. Кроме того, начинается выделение карбидов железа из твердого раствора углерода в альфа-железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение пластических и вязких свойств стали, а также уменьшение внутренних напряжений в деталях.

Для низкого отпуска детали выдерживают в течение определенного времени обычно в масляных или соляных ваннах. Если для низкого отпуска детали нагревают на воздухе, то для контроля температуры часто пользуются цветами побежалости, появляющимися на поверхности детали.

табл.1

Цвет побежалостиТемпература, °СИнструмент, который следует отпускать
Бледно-желтый210
Светло-желтый220Токарные и строгальные резцы для обработки чугуна и стали
Желтый230Тоже
Темно-желтый240Чеканы для чеканки по литью
Коричневый255
Коричнево-красный265Плашки, сверла, резцы для обработки меди, латуни, бронзы
Фиолетовый285Зубила для обработки стали
Темно-синий300Чеканы для чеканки из листовой меди, латуни и серебра
Светло-синий325
Серый330

Появление этих цветов связано с интерференцией белого света в пленках окисла железа, возникающих на поверхности детали при ее нагреве. В интервале температур от 220 до 330 ° в зависимости от толщины пленки цвет изменяется от светло-желтого до серого. Низкий отпуск применяется для режущего, измерительного инструмента и зубчатых колес.

При среднем (нагрев в пределах 300-500°) и высоком (500-700°) отпуске сталь из состояния мартенсита переходит соответственно в состояние тростита или сорбита. Чем выше отпуск, тем меньше твердость отпущенной стали и тем больше ее пластичность и вязкость.

При высоком отпуске сталь получает наилучшее сочетание механических свойств, повышение прочности, пластичности и вязкости, поэтому высокий отпуск стали после закалки ее на мартенсит назначают для кузнечных штампов, пружин, рессор, а высокий — для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).

Для некоторых марок стали отпуск производят после нормализации. Этот относится к мелкозернистой легированной доэвтектоидной стали (особенно никелевой), имеющий высокую вязкость и поэтому плохую обрабатываемость режущим инструментом.

Для улучшения обрабатываемости производят нормализацию стали при повышенной температуре (до 950-970°), в результате чего она приобретает крупную структуру (определяющую лучшую обрабатываемость) и одновременно повышенную твердость (ввиду малой критической скорости закалки никелевой стали). С целью уменьшения твердости производят высокий отпуск этой стали.

Дефекты закалки

К дефектам закалки относятся:

  • трещины,
  • поводки или коробление,
  • обезуглероживание.

Главная причина трещин и поводки — неравномерное изменение объема детали при нагреве и, особенно, при резком охлаждении. Другая причина — увеличение объема при закалке на мартенсит.

Трещины возникают потому, что напряжения при неравномерном изменении объема в отдельных местах детали превышают прочность металла в этих местах.

Лучшим способом уменьшения напряжений является медленное охлаждение около температуры мартенситного превращения. При конструировании деталей необходимо учитывать, что наличие острых углов и резких изменений сечения увеличивает внутреннее напряжение при закалке.

Коробление (или поводка)возникает также от напряжений в результате неравномерного охлаждения и проявляется в искривлениях деталей. Если эти искривления невелики, они могут быть исправлены, например, шлифованием. Трещины и коробление могут быть предотвращены предварительным отжигом деталей, равномерным и постепенным нагревом их, а также применением ступенчатой и изотермической закалки.

Обезуглероживание стали с поверхности — результат выгорания углерода при высоком и продолжительном нагреве детали в окислительной среде. Для предотвращения обезуглероживания детали нагревают в восстановительной или нейтральной среде (восстановительное пламя, муфельные печи, нагрев в жидких средах).

Образование окалины на поверхности изделия приводит к угару металла, деформации. Это уменьшает теплопроводность и, стало быть, понижает скорость нагрева изделия в печи, затрудняет механическую обработку. Удаляют окалину либо механическим способом, либо химическим (травлением).

Выгоревший с поверхности металла углерод делает изделия обезуглероженным с пониженными прочностными характеристиками, с затрудненной механической обработкой. Интенсивность, с которой происходит окисление и обезуглерожевание, зависит от температуры нагрева, т. е. чем больше нагрев, тем быстрее идут процессы.

Образование окалины при нагреве можно избежать, если под закалку применить пасту, состоящую из жидкого стекла — 100 г, огнеупорной глины — 75 г, графита — 25 г, буры — 14 г, карборунда — 30 г, воды — 100 г. Пасту наносят на изделие и дают ей высохнуть, затем нагревают изделие обычным способом. После закалки его промывают в горячем содовом растворе. Для предупреждения образования окалины на инструментах быстрорежущей стали применяют покрытие бурой. Для этого нагретый до 850°С инструмент погружают в насыщенный водный раствор или порошок буры

Антикоррозионная обработка изделий после термической обработки

После термической обработки, связанной с применением солей, щелочей, воды и прочих веществ, могущих вызывать при длительном хранении изделий коррозию, следует провести антикоррозионную обработку стальных изделий, заключающуюся в том, что очищенные, промытые и высушенные изделия погружают на 5 минут в 20 — 30% водный раствор нитрита натрия, после чего заворачивают в пропитанную этим же раствором бумагу.
В таком виде изделия могут храниться длительное время

С какой целью производится нормализация стальных конструкций

ПОЛНЫЙ ОТЖИГ И НОРМАЛИЗАЦИЯ СТАЛИ

Получение навыков выбора параметров режима и выполнения операций полного отжига и нормализации стали.

ПРИБОРЫ И МАТЕРИАЛЫ

Прибор для определения твердости, лабораторные печи, шлифовальный станок, образцы.

Основное превращение, протекающее во время охлаждения при отжиге стали – эвтектоидный распад аустенита на смесь феррита с цементитом. Кинетика эвтектоидного превращения изображается С-образными кривыми, построенными в координатах “температура – время” на диаграмме изотермического превращения аустенита (рис. 1).

Рис. 1. Диаграмма изотермического распада аустенита
для доэвтектоидной стали

При температуре 727 ° C ( точка А 1) аустенит находится в термодинамически устойчивом равновесии со смесью феррита и цементита. Чтобы начался распад аустенита, необходимо его переохладить ниже 727 ° C. Устойчивость переохлажденного аустенита характеризуется инкубационным периодом, т.е. отрезком времени (от оси ординат до С-кривой, рис. 1), в течение которого обычные методы исследования не фиксируют появление продуктов распада.

Эвтектоидная смесь феррита с цементитом растет от отдельных центров в виде колоний. Важнейшей характеристикой эвтектоида является дисперсность феррита и цементита внутри его колоний. Мерой этой дисперсности служит межпластинчатое расстояние D ( рис. 2).

Межпластинчатым расстоянием называется средняя суммарная толщина соседних пластинок феррита и цементита.

Рис. 2. Схема феррито-цементитной структуры.

В зависимости от дисперсности пластин в эвтектоиде его называют перлитом, сорбитом или трооститом. Перлит образуется при небольших степенях переохлаждения (охлаждение с печью со скоростью в несколько градусов в минуту), и строение его можно выявить при малых и средних увеличениях микроскопа. Сорбит образуется при несколько больших степенях переохлаждения (охлаждение на воздухе со скоростью в несколько десятков градусов в минуту). Поэтому он более дисперсен, и микростроение сорбита выявляется только при больших увеличениях микроскопа.

Троостит образуется еще при больших степенях переохлаждения, и его внутреннее строение трудно выявить даже при очень больших увеличениях светового микроскопа. С увеличением дисперсности эвтектоидной смеси возрастают твердость, предел прочности и предел текучести.

Так как подразделение эвтектоида на перлит, сорбит и тростит условно и между ними нет четкой границы, то их различают по твердости. Например, в стали У8 твердость перлита 170 – 230 HB, сорбита 230 – 330 HB, троостита 330 – 400 HB.

При полном отжиге доэвтектоидная сталь после нагрева выше критической точки А C3 на 30 – 50 ° C ( рис. 3) медленно охлаждается вместе с печью. Охлаждение при отжиге проводят с такой малой скоростью (порядка несколько градусов в минуту), чтобы аустенит распадался при небольшой степени переохлаждения. Так как превращение аустенита при отжиге полностью завершается при температурах значительно выше изгиба С-кривых, то отжигаемые изделия можно выдавать из печи на спокойный воздух при температурах 500 – 600 ° C, если не опасны термические напряжения.

Полный отжиг проводят для снижения твердости, повышения пластичности и получения однородной мелкозернистой структуры.

Рис. 3. Участок диаграммы Fe-Fe3C c нанесенным интервалом
температур термической обработки:
І – полный отжиг;
ІІ – нормализация

При нормализации сталь нагревают до температур на 30 – 50 ° C выше линии GSE и охлаждают на спокойном воздухе (рис. 3). Ускоренное, по сравнению с отжигом, охлаждение обуславливает несколько большее переохлаждение аустенита. Поэтому при нормализации получается более тонкое строение эвтектоида. После нормализации сталь должна иметь большую прочность, чем после отжига. Нормализацию применяют чаще как промежуточную операцию для смягчения стали перед обработкой резанием, для устранения пороков строения и общего улучшения структуры перед закалкой. Таким образом, назначение нормализации как промежуточной обработки аналогично назначению отжига. Так как нормализация гораздо выгоднее отжига (охлаждение не с печью, а на воздухе), то ее всегда следует предпочесть отжигу, если оба эти вида обработки дают одинаковые результаты. Но нормализация не всегда может заменить отжиг как операция смягчения стали.

Нормализацию широко применяют вместо смягчающего отжига к малоуглеродистым сталям, в которых аустенит слабо переохлаждается. Но она не может заменить смягчающий отжиг высокоуглеродистых сталей, которые весьма ощутимо упрочняются при охлаждении на воздухе из-за значительного переохлаждения аустенита.

В заэвтектоидной стали нормализация устраняет грубую сетку вторичного цементита. При нагреве выше точки АС m ( линия SE) вторичный цементит растворяется, а при последующем ускоренном охлаждении на воздухе он не успевает образовать грубую сетку, понижающую свойства стали.

  1. Название работы
  2. Цель работы
  3. Участок диаграммы Fe-Fe3C. ( рис. 3)
  4. Выбранные параметры режима полного отжига и нормализации для заданной стали.
  5. Значения твердости до и после термической обработки.
  6. Выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ САМОПРВЕРКИ

  1. В чем заключается процесс полного отжига доэвтектоидной стали ?
  2. Что такое нормализация ?
  3. Какие структурные изменения происходят при полном отжиге ?
  4. Как выбирают температуру нагрева для отжига доэвтектоидной стали ?
  5. В каких случаях назначают полный отжиг стали ?
  6. В каких случаях назначают нормализацию стали ?

Нормализация стали — процесс, температура, режимы, время

Нормализацию стали часто рассматривают с двух точек зрения — термической и микроструктурной.

В термическом смысле и классическом понимании, нормализация стали — это нагрев стали до аустенитного состояния с последующим охлаждением на спокойном воздухе. Иногда к нормализации относят также и операции с охлаждением ускоренным воздухом.

Место температуры нормализации на диаграмме состояния железо-углерод показано на рисунке 1.

Рисунок 1 – Упрощенная диаграмма состояния железо-углерод.
Заштрихованная полоса – температура нормализации сталей

С точки зрения микроструктуры нормализованной структурой считают перлит для стали с содержанием углерода 0,8 %, а для сталей с меньшим содержанием углерода — доэвтектоидных сталей — смесь перлита и феррита.

Операцию нормализации применяют для большинства сталей и, в том числе стальных отливок. Очень часто сварные стальные швы нормализуют для измельчения структуры стали в зоне воздействия сварки.

Суть процесса

Процедура нормализации выглядит следующим образом. Деталь разогревают до температур, которые превышает максимально допустимые параметры (Ас1, Ас3) на 30 – 50 градусов Цельсия, затем, какое-то время ее выдерживают под воздействием этой температуры, после чего ее охлаждают.

Подбор температуры выполняют, руководствуясь маркой стали. Так, сплавы содержащие 0,8 % углерода так называемые заэвтектоидные, обрабатывают при температурах, лежащих между критическими точками Ас1 и Ас3.

Что такое критические точки – так называют температуры, при которых происходят фазовые изменения и структуры сплава при его нагреве или охлаждении.

Результатом этого становиться то, что в твердый раствор попадает некоторый объем углерода и закрепляется аустенита. То есть, на свет появляется структура, состоящая из мартенсита и цементита. Именно цементит приводит к росту стойкости к износу и твердости. Нагрев высокоуглеродистой стали свыше ас3 приводит к тому, что увеличиваются внутренние напряжения. Это происходит из-за того, что растет количество аустенита, в следствии роста концентрации углерода.

Сталь с содержанием углерода менее 0,8% при нагреве свыше критической точки Ас3 приобретает повышенную вязкость. Это происходит потому что в стали этого типа появляется аустенит (мелкозернистый), переходящий в мартенсит (мелкозернистый).

Доэвтектоидная сталь не обрабатывают при температурах, расположенных в диапазоне Ас1 – Ас3. Так как в этом случае появляются феррит, который снижает параметры твердости.

Время необходимое для выполнения операции

Для получения однородной структуры сплава, при определенной температуре, требуется какое-то время. Это время и будет определено как время выдержки стали при нормализации. Опытным путем определено, что слой металла толщиной в 25 мм через час становится однородным. Таким образом. и определяют время нормализации.

Завершающий этап – охлаждение

Скорость охлаждения играет существенную роль в образовании объема перлита и размера его пластин. Многочисленные исследования показали, что высокая интенсивность охлаждения увеличивает количество перлита и сталь получает повышенную твердость и прочность. Малая интенсивность охлаждения приводит к тому, что сталь теряет твердость и прочность.

При обработке деталей с существенными перепадами размеров, например. валов, целесообразно убрать напряжения, возникающие под воздействием колебания температур. Для этого их предварительно нагревают в емкости, заполненной разными солями. При понижении температуры допускается ускорить этот процесс помещая горячие детали в воду или специально подобранное масло.

Другими словами, нормализация стали устраняет напряжения внутри детали, минимизирует ее структуру. То есть она оказывает прямое влияние на изменение микроструктуры стальных сплавов.

Цель нормализации стали

Цели нормализации стали могут быть различными: например, как для увеличения, так и для снижения прочности и твердости в зависимости от термической и механической истории изделия.

Цели нормализации часто пересекается или даже путается с отжигом, термическим упрочнением и отпуском для снятия напряжений. Нормализацию применяют, например, для улучшения обрабатываемости детали резанием, измельчения зерна, гомогенизации зеренной структуры или снижения остаточных напряжений. Сравнение температурно-временных циклов для нормализации и отжига показано на рисунке 2.

Рисунок 2 ─ Сравнение температурно-временных циклов нормализации и полного отжига. Более медленное охлаждение при отжиге приводит к более высокой температуре феррито-перлитного превращения и более грубой микроструктуре, чем при нормализации.

Для стальных отливок нормализацию применяют для гомогенизации их дендритной структуры, снижения остаточных напряжений и большей восприимчивости к последующему термическому упрочнению.

Изделия, полученные обработкой давлением, могут подвергать нормализации для снижения полосчатости структуры после прокатки или разнозернистость после ковки.

Нормализацию с последующим отпуском применяют вместо обычной закалки, когда изделия имеют сложную форму или резкие изменения по сечению. Это делают, чтобы избежать образования трещин, коробления и чрезмерных термических напряжений.

Процесс нормализации и основные принципы

С точки зрения физики процесса нормализация стали представляет собой обработку металла термическим образом, при котором его нагревают выше верхнего критического порога Асm и Ас3 на величину в 30–50 градусов по Цельсию. На этом уровне происходит выдержка металла, а далее его охлаждение при обычных температурных условиях окружающей среды.

После достижения точки Ас3 наблюдается завершение фазы, когда происходит преобразование в аустенит феррита с одновременной нормализацией структуры полученного вещества. За преодолением порога Асm следует процесс, где уже из аустенита начинает выделяться цементит вторичный (если температура идет в сторону уменьшения) и прекращается его растворение в аустените (при увеличении температуры относительно этой точки).