Процесс производства стали - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Процесс производства стали

Способы производства стали

С момента изобретения стали, менялись и совершенствовались способы ее производства. В настоящее время существует несколько приоритетных способов производства стали. К ним относятся кислородно-конвертерный, мартеновский и электросталеплавильный способы производства (или плавления) стали. В основе всех этих способов лежит окислительный процесс, направленный на снижение в чугуне некоторых веществ. Давайте остановимся на каждом способе более подробно и рассмотрим их отличия.

Первое использование кислородно-конвертерного способа приходится на пятидесятые годы двадцатого столетия. В процессе производства стали, чугун продувают в конвертере чистым кислородом. При этом, процесс происходит без затраты топлива. Для того, чтобы переработать 1 тонну чугуна в сталь требуется около 350 кубометров воздуха. Стоит отметить, что кислородно-конвертерный способ получения стали является наиболее актуальным на сегодняшний день. При этом, процесс не ограничивается на одном способе вдувания кислорода. Различают кислородно-конвертерный процесс с комбинированной, верхней и нижней поддувкой. Конвертерный способ производства стали с комбинированной поддувкой является наиболее универсальным.

Для осуществления этого метода необходим конвертер. Подача кислорода осуществляется через водоохлаждаемую фурму под давлением. В данном случае, процесс окисления является наиболее значимым. Окисление чугуна происходит под воздействием дутья. В результате окисления выделяется тепло, что способствует снижению примесей и повышению температуры металла. далее происходит так называемое раскисление металла.

В процессе производства стали мартеновским способом, участвует специальная отражательная печь. Для того чтобы нагреть сталь до нужной температуры (2000 градусов), в печь вводят дополнительное тепло с помощью регенераторов. Это тепло получают за счет сжигания топлива в струе нагретого воздуха. Обязательное условие – топливо должно полностью сгорать в рабочем пространстве. Особенностью мартеновского способа производства стали является то, что количество кислорода, подаваемого в печь, превышает необходимый уровень. Это позволяет создать воздействие на металл окислительной атмосферы. Сырье (чугун, железный и стальной лом) погружается в печь, где подвергается плавлению в течение 4 – 6 часов. В процессе плавления есть возможность проверять качество металла, путем взятия пробы. В мартеновской печи возможно получать специальные сорта стали. Для этого в сырье вводят необходимые примеси.

В результате электросталеплавильного способа, получают сталь высокого качества. Процесс этот происходит в специальных электрических печах. Основной принцип электросталеплавильного способа производства стали – использование электроэнергии для нагрева металла. Механизм производства следующий: в результате горения нагревательного элемента, выделяется тепло, за счет преобразования электроэнергии в тепловую энергию. Важно отметить, что процесс выплавки связан с выработкой шлаков. Качество получаемой стали во многом зависит от количества и состава шлаков. Основной причиной образования шлаков, в процессе производства стали, является окисление шихты из оксидов.

Благодаря шлакам, происходит связь оксидов, которые образуются в процессе окисления чугуна, а так же удаление ненужных примесей. Кроме этого, шлаки являются передатчиками тепла и кислорода. Присутствие шлаков в процессе производства стали оказывает благотворное влияние на качество стали. Определенное соотношение количества шлаков выводит из стали ненужные вредоносные вещества, например, фосфор. Кроме вышеперечисленных способов производства стали, известны и такие способы, как производство стали в вакуумных индукционных печах, плазменно-дуговая сварка.

Давайте подробнее остановимся на способе производства особо чистой стали, а так же жаропрочных сплавов. Суть способа состоит в выплавке в вакуумных печах. После такой выплавки, сталь дополнительно переплавляют вакуумным дуговым переплавом. Что дает возможность получения качественной однородной стали. Такая сталь применяется, в основном, в авиакосмической промышленности, атомной энергетике и других важных отраслях. Мы рассмотрели основные способы производства стали. Выбор способа всегда зависит от поставленных задач, удобства применения оборудования, необходимого качества полученной стали и от других факторов. Естественно, что каждый способ имеет свои преимущества и свои недостатки.

Вся эта сталь применяется для производства металлопроката и спец сталей, на нашей металлобазе Вы можете найти широкий выбор и того и другого.

Способы производства стали

Технологический процесс производства углеродистой стали можно разделить на два этапа. Сначала из руды выплавляется чугун, который на следующем этапе перерабатывается в сталь. При сокращении в расплавленном чугуне вкраплений углерода и иных примесей, которые в процессе плавления сгорают или отделяются в форме шлака. В качестве исходного сырья для изготовления стали используется чугун, металлолом, железные руды, также в расплавленный металл могут быть добавлены флюсы и ферросплавы. Существуют три принципиально отличающихся технологии выпуска: электрическое плавление, конвертерный метод и плавка в мартеновских печах, последний способ на сегодняшний день считается наиболее эффективным и распространенным, а производимая сталь по своему качеству выше, чем при конверторной плавке.

Мартеновский способ.

Масса загрузки мартеновских печей доходит до тысячи тонн, внутреннее пространство выполняется в виде камеры, вытянутой по горизонтальной оси и обкладывается специальным выдерживающим высокую температуру кирпичом. В верхнем отделении проложены каналы, связывающие камеру с теплообменными устройствами (регенераторами). Нижняя часть конструкции, имеет форму ванны и называется подом. Для усиления эффекта в регенераторах производится подогрев газа. В мартеновской печи плавится твердый или жидкий чугун с добавлением железной руды или стального металлолома. Углерод сгорает под воздействием высокой температуры, окисляющиеся под воздействием кислородного дутья примеси преобразуются в шлак и удаляются с поверхности расплавленного металла, сера удаляется при помощи содержащего известь флюса. За время плавления, занимающее от четырех до восьми часов, имеется возможность добавления в состав металла дополнительных компонентов, для получения на выходе легированной стали. В процессе плавления производится отбор образцов металла для химического анализа, при получении желаемых параметров расплавленная сталь выпускается в ковш, откуда разливается формам. Из стали произведенной по этому методу производят монорельсовые и подкрановые балки, фермы мостов и цеховых перекрытий, железнодорожные рельсы и арматуру.

Конверторный способ.

Печь конвертерная представляет вращающийся относительно горизонтальной оси стальной футерованный корпус грушевидной формы. При помощи ковша внутренняя часть конвертера наполняется расплавленным чугуном, через отверстия в корпусе под давлением нагнетается воздушно кислородная смесь образуя в сплаве закись железа, взаимодействующую с нежелательными в сплаве элементами, преобразовывает их в шлак или выгорающие оксиды. Метод считается экономичным и отличается высокой производительностью, занимает от пятнадцати до тридцати минут, емкость конвертерных печей достигает до шестисот тонн, полученный металл используется для производства стальных листов, балок, швеллеров, катанки и проволоки.

Электроплавка.

Электроплавильные дуговые или индукционные печи служат для получения сталей высокого качества, в печь загружают руду, скрап или стальной сплав после конвертера или из мартеновской печи, в процессе добавляются легирующие металлы. Для нагрева используется электрическая дуга между расплавом и специальными электродами. Выплавка по этой технологии позволяет получать сталь очень хорошего качества, но имеет высокую себестоимость и низкую производительность, как правило, применяются печи до двухсот тонн. В связи с этим часто применяются разные типы печей, сначала сплав готовят в конвертерной печи или мартене, а затем подается в электропечь, где доводится до более высокого качественного уровня.

Уважаемые партнеры, клиенты, заказчики. Для оперативной обработки вашей заявки указывайте в заказе каким образом необходимо подготовить металл к отгрузке. Нужно ли порезать его для транспортировки, на какую длину? Если заказываете доставку нашими силами, укажите по какому адресу и в какой город, какой транспортной компанией или каким отдельным видом транспорта необходимо произвести отправку приобретаемого вами металла.

Читайте также:  Гост 3263 75 трубы стальные водогазопроводные

Сущность процесса производства стали

Сталь – это железоуглеродистый сплав, в котором содержится практически до 1,5% углерода, при большом его содержании увеличивается хрупкость и твёрдость стали, но они не широко применяются.

Предельный чугун и стальной лом являются основными исходными материалами для производства стали.

В стали малое содержание углерода, чем в чугуне.

При взаимодействии чугуна с кислородом в сталеплавильных печах железо окисляется:

Вместе с железом также окисляются кремний, марганец, углерод и фосфор. Оксид железа при высокой температуре отдаёт свой кислород более активным примесям в чугуне, а так же окисляет их.

В три этапа осуществляются процессы выплавки стали.

Первый этап. Нагрев ванны жидкого металла и расплавление шихты.

Температура металла не высокая, происходит процесс окисления железа примесей, образование оксида железа, а именно марганца, кремния и фосфора.

Самая важная задача этапа – это удаление фосфора. Для этого желательно провести плавку в основной печи. Должна быть не высокая температура ванны и шлака.

Второй этап. Кипение металлической ванны, которое начинается по мере прогрева к более высоким температурам. Следовательно, при повышении температуры быстрее протекает реакция окисления углерода, которая происходит с поглощением теплоты:

Для того что бы, произошли окисления углерода в металл необходимо ввести малое количество руды.

Для удаления серы также создаются условия. В стали сера находится в виде сульфида, который тоже растворяется в главном шлаке. Если температура высокая, то количество сульфида железа растворяется в шлаке больше и взаимодействует с оксидом кальция:

Третий этап . Следовательно, сталь раскисляется в восстановлении оксида железа, который растворён в жидком металле.

Существуют два способа раскисления стали: осаждающее и диффузионное.

Принцип осаждающего раскисления заключается в том, что большее количество в ней кислорода переводят в нерастворимые оксиды элементов – раскислителей.

Диффузионное раскисление взаимодействует со специальным шлаком и за счёт этого происходит процесс снижения концентрации кислорода в расплаве стали.

Стали выплавляют в зависимости от степени раскисления:

При полном раскислении в печи и ковше получается спокойная сталь.

Полуспокойная сталь раскисляется промежуточно между спокойной и кипящей. Кипящая же сталь раскисляется в печи не полностью.

В различных по принципу действиях металлургических агрегатах, таких как мартеновских печах, электрических печах и кислородных конвертерах, чугун переделывается в сталь.

Мартеновский процесс в период 70-х годов 20 века являлся главным способом производства стали. Способ характеризуется не особо большой производительностью. Благодаря такому способу можно получить качественную сталь. Вместительность печи составляет приблизительно от 200 до 900 тонн.

По устройству и своему принципу мартеновская печь является пламенной отражательной регенативной печью. В ней находится плавительное пространство, которое сжигает разнообразное топливо или мазут. Для получения стали в расплавленном состоянии нужна высокая температура, благодаря ней обеспечивается регенерацией тепла печных газов. Время плавки составляет от 3 до 6 часов, для крупных печей больше – до 12 часов.

Существуют разновидности мартовского процесса, которые используют при расплавке в зависимость от самого состава шихты.

1. Скрап – процесс. Шихта состоит из стального лома и 25-45% чушкового предельного чугуна. Его применяют только на заводах, где нет доменных печей, но много металлолома.

2. Скрап-рудный процесс. Шихта состоит из железной руды и 55-75% жидкого чугуна. Такой процесс применяют на металлургических заводах, которые имеют доменные печи.

Скрап – рудным процессом стали изготовлять большое количество в мартеновских печах с основной футеровкой. В таких печах выплавляют такие виды сталей как низко- и марганцовистые, конструктивные, углеродистые, но кроме высоколегированных.

В нашей стране в мартеновских печах выплавляют около 20% всей стали. В последние годы доля мартеновского способа производства стали сократилась из-за развития электросталеплавильного и кислородно-конвертного производств.

Получение стали в электрических печах, машиностроительных и металлургических заводов называется электросталеплавильное производство.

Получение стали в сталеплавильных агрегатах — конвертерах путём продувки жидкого чугуна кислородом или воздухом называется кислородно-конверторное производство.

Кислородный конвертер выглядит в виде сосуда грушевидной формы из стального листа, который футерованный основным кирпичом.

Тоннаж конвертера от 130 до 350 тонн жидкого чугуна. Во время процесса работы конвертера может поворачиваться на 360 градусов для загрузки скрапа, заливки чугуна, слива шлака и стали.

Основные шихтовые материалы кислородно-конвертного процесса: стальной лом, известь для наведения шлака, жидкий предельный чугун, плавиковый шпат для разжижения шлака, железная руда и боксит.

Низколегированные стали, кипящие и спокойные, стали с разным содержанием углерода выплавляют в кислородных конвертерах. Конвертер для плавки ёмкостью от 130 до 300 тонн заканчивается примерно через 25-30 минут.

Более высокопроизводительным способом выплавки стали является именно кислородно-конвертерный процесс. Отсутствие топлива, меньшие затраты на строительство цехов и простота устройства конвертера – другие достоинства этого процесса.

Производство стали в электропечах. Такие печи, прежде всего, используют для выплавки высоколегированных, инструментальных, конструкционных, специальных сталей и сплавов.

Электропечи различают дуговые и индукционные.

Дуговая является более распространенным типом печей. В них проходит разряд между электродами через скрап. Поступление электрического тока происходит через трансформатор, который регулирует параметры и напряжение тока.

Выплавка в таких печах производятся высококачественные конструкционные сплавы и стали. Качество, сравнивая с конверторной и мартеновской, более высокое. Это проявляется её высокой чистотой по фосфору и сере, хорошей раскисляемостью.

Стоит учесть, что эта электросталь стоит дороже, чем конверторная или мартеновская.

Применяя кислород, повышается производительность на 15-25% и снижается расход электроэнергии более 10-15%.

Индукционная служит для плавки материалов с использованием индукционного нагрева. В частности используют индукционный тигельные печи, состоящие из представляющего собой медную водоохлаждаемую трубку, тигля и индуктора. В таких печах чаще всего выплавляют чугун, сталь, металлы, медь, алюминий, магний, сталь.

Преимущества индукционных печей заключается в том, что очень малый угар легкоокисляющихся элементов, таким образом можно выплавить сталь с очень низким содержанием углерода. В такой стали пониженное содержание азота и высокой чистоты по неметаллическим включениям. Индукционные печи высокопроизводительные и имеют высокий электрический КПД. Их недочёты заключают в том, что имеют маленькую вместительность, высокую стоимость электрооборудования и низкую стойкость основных тиглей.

студентка Торезского колледжа ДонГУУ
Малеева Виолетта

Производство стали – технология, этапы, оборудование

Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%. Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким. Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.

Читайте также:  Конвертерный способ производства стали

Процесс производства стали

Особенности процесса

Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется. Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне. Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец). В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция. При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием — оксидом кальция (CaO) — распадается, и фосфорный ангидрид превращается в шлак.

Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа. Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак. Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

Кипение ванны расплавленного металла

Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.

Процесс производства стали в электропечах

Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода. Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется. Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.

Производство стали в мартеновских печах

Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки. Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа. Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

Производство сталей может быть направлено на получение материалов следующего типа:

  • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен;
  • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями; именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом. Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся. Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

Необходимое оборудование

Технология производства стали предполагает использование на сталелитейных заводах следующего оборудования.

Участок кислородных конверторов:

  • системы обеспечения аргоном;
  • сосуды конверторов и их несущие кольца;
  • оборудование для фильтрации пыли;
  • система для удаления конверторного газа.
  • печи индукционного типа;
  • дуговые печи;
  • емкости, с помощью которых выполняется загрузка;
  • участок складирования металлического лома;
  • преобразователи, предназначенные для обеспечения индукционного нагревания.

Участок вторичной металлургии, на котором осуществляется:

  • очищение стали от серы;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуумной среды.

Участок для реализации ковшовой технологии:

Ковшовое хозяйство, обеспечивающее производство стали, также включает в себя:

  • крышки ковшей;
  • ковши литейного и разливочного типа;
  • шиберные затворы.

Производство стали также предполагает наличие оборудования для непрерывной разливки стали. К такому оборудованию относится:

  • поворотная станина для манипуляций с разливочными ковшами;
  • оборудование для осуществления непрерывной разливки;
  • вагонетки, на которых транспортируются промежуточные ковши;
  • лотки и сосуды, предназначенные для аварийных ситуаций;
  • промежуточные ковши и площадки для складирования;
  • пробочный механизм;
  • мобильные мешалки для чугуна;
  • оборудование для обеспечения охлаждения;
  • участки, на которых выполняется непрерывная разливка;
  • внутренние транспортные средства рельсового типа.

Производство стали и изготовление из нее изделий представляет собой сложный процесс, сочетающий в себе химические и технологические принципы, целый перечень специализированных операций, которые используются для получения качественного металла и различных изделий из него.

Получение стали

Сталь является основным материалом, применяемым для создания современной техники. Это объясняется тем, что она обладает высокими прочностью и износостойкостью, хорошо сохраняет приданную форму в изделиях, сравнительно легко поддается различным видам обработки. Кроме того, основной компонент стали – железо – является широко распространенным элементом в земной коре.

Сталь производят в различных по принципу действия, трудоемкости, техническим возможностям металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических дуговых и индукционных печах и др. Основными материалом для производства стали по традиционным технологиям являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей значительно ниже, чем в чугуне (табл. 4.1). Общая схема технологических процессов производства стали показана на рис. 4.2.

Читайте также:  Безрезьбовое соединение стальных труб

Состав передельного чугуна и низкоуглеродистой стали, %

Рис. 4.2. Схема технологических процессов производства стали:

ЭШП – электрошлаковый переплав; ВДП – вакуум но-дуговой переплав; ЭЛП – электронно-лучевая печь; ПДП – плазменно-дуговой переплав

Производство стали по способу Бессемера

Одним из первых промышленно освоенных способов производства стали, примененным еще в середине XIX в., является способ Бессемера. По нему передел чугуна в сталь проводится продуванием воздуха через расплавленный горячий чугун. Процесс протекает без затраты топлива за счет теплоты, выделяющейся при экзотермических реакциях окисления кремния, марганца и других элементов. Конвертер Бессемера (рис. 4.3) представляет собой грушевидный стальной сосуд, футерованный внутри огнеупорным материалом. В дне имеются отверстия, через которые подается под давлением 0,12–0,125 МПа воздух для продувки. Расход воздуха составляет в среднем около 300 м3 на 1 т залитого чугуна. Конвертер работает периодически. Повернув его в горизонтальное положение, заливают чугун и подают воздух, затем поворачивают вертикально. Бессемеровский процесс протекает в три этапа. Первый заключается в основном в окислении железа, кремния, марганца. Второй начинается при температуре 1500°С: происходит интенсивное окисление углерода кислородом оксида железа (II) и воздуха.

Рис. 4.3. Конвертер Бессемера:

а – внешний вид; б – схема процесса; в – разливка готовой стали

Образующийся оксид углерода сгорает над конвертером ослепительно ярким пламенем длиной до 8 м. Продолжительность второго этапа 4–5 мин. Третий этап начинается с затуханием пламени от горения оксида углерода: происходит образование металла. Подачу воздуха прекращают, переводят конвертер в горизонтальное положение и вводят раскислители (ферромарганец или ферросилиций). Готовую сталь выливают в ковш (рис. 4.3, в) и направляют на разливку.

Процесс Бессемера протекает очень быстро (в течение 15 мин), поэтому производительность метода велика. Но этим способом можно переделывать в сталь не все сорта чугуна. Чугун для бессемерования должен содержать около 2% кремния, выгорание которого является источником теплоты, необходимой для осуществления процесса, а содержание серы и фосфора должно быть минимальным, так как эти примеси не удаляются в ходе процесса. К тому же значительное количество железа окисляется и теряется (велик “угар” железа).

Полученный в конвертере расплавленный металл содержит значительное количество растворенного оксида железа (II), что отрицательно сказывается на качестве стали, придавая ей хрупкость (красноломкость). Еще один недостаток конвертерной стали – повышенное содержание в ней азота. В производстве стали этим способом в последние годы успешно используется кислородное дутье или дутье воздухом, обогащенным кислородом. Это сокращает продолжительность процесса, что, в свою очередь, приводит к снижению содержания азота в стали.

Процесс производства стали

Производство стали — это сложный физико-химический процесс, при котором протекают химические реакции в жидком металле и шлаке , а также на границах между жидким металлом шлаком, между шлаком и газовой печной средой.

Приготовление стали любым способом сопровождается химическими реакциями восстановления, окисления и соединения отдельных элементов и образующихся веществ между собой. Углеродистая сталь по своему химическому составу отличается он чугуна тем, что в ее составе содержание С, Si, Мn, Р и S находится в меньшем количестве, чем в чугуне. Легированные стали в отдельных случаях содержат повышенное количество отдельных легирующих элементов. Поэтому при производстве стали некоторые элементы из металла удаляются, а другие вводятся в расплавленный металл.

При рассмотрении химических реакций учитывается, что некоторые из них являются экзотермическими, а другие — эндотермическими. Элементы, участвующие в экзотермических реакциях, энергичней вступают во взаимодействие, когда металл имеет более низкую температуру и, наоборот, в перегретом металле более энергично протекают реакции тех элементов, которые взаимодействуют с поглощением тепла.

При плавке чугуна или стали в первую очередь окисляется железо (согласно закону действующих масс), ввиду превалирующего его содержания в сплаве:

2Fe+O 2 →2FeO,
4FeO+ O2→2Fe 2 O 3 ,

Однако ввиду того, что ряд примесей, содержащихся в металле, имеют большее сродство к кислороду, чем железо, они восстанавливают железо из окислов. Поэтому окисление примесей производится как непосредственно кислородом, так и за счет реакций с окислами железа Последовательность реакций подчиняется законам химического сродства:

Si + O 2 →Si O 2 , Si + 2FeO→2Fe + SiO 2 ,
2 Мn→O 2 →2 МnО, Мn+FeO→Fe+МnО,
2С + O 2 →2СО, С + FeO→Fe+СО,
С + O 2 →CO 2 ,
4Р + 5O 2 →2Р 2 O 5 , 2P + 5FeO→5Fe + P 2 O 5

Удаление фосфора успешно протекает в металлургических чах с основной футеровкой Общий ход реакций, связанных с алением фосфора, будет следующим:

2 Р + 5 FeO→Р 2 О 5 +5Fe + 47 850 кал,
Р 2 О 5 + 3 FeO→(FeO)3 Р 2 О 5 + 52 360 кал,
(FeO) 3 Р 2 О 5 + 4СаО→(СаО)4 Р 2 О 5 + 3 FeO + 108 340 кал.

Фосфор удаляют в начальный период плавки, создавая окислительные шлаки высокой основности Серу удаляют в металлургических печах с основной футеровкой при высокой основности шлака:

FeS+СаО↔CaS 4- FeO,
MnS+СаО↔CaS+МnО.

Эти реакции носят обратимый характер, и при наличии в шлаке повышенного количества FeO они идут в обратном направлении. Весьма благоприятные условия для удаления серы можно создать при плавке стали в электрических печах под восстановительным и карбидным шлаком:

FeS +СаО + С→CaS+Fe + СО,
MnS+СаО +С→CaS + Мn+СО,
3 FeS+СаС 2 + 2 СаО→3 Fe+3CaS + 2 СО,
3MnS+CaC 2 +2CaO→3Мn+3CaS + 2СО.

Поэтому удаление серы протекает весьма успешно в электропечах, в которых легко создать восстановительную атмосферу.Закись железа растворяется в металле и шлаке. Закись железа в твердом металле является вредной примесью. Поэтому ее Стремятся удалить из металла во время плавки путем раскисления.

Шлак и металл можно рассматривать как две несмешивающиеся жидкости, находящиеся в равновесии, в которых растворяются FeO, FeS и другие соединения. По закону распределения отношение концентраций растворенных в этих жидкостях веществ есть величина постоянная при данной температуре, например:

Отношение L называют коэффициентом распределения. В соответствии с этим законом процессы раскисления стали можно проводить в двух направлениях: в жидком металле путем осадочного раскисления, или в жидком шлаке путем диффузионного раскисления. При осадочном раскислении в жидкую сталь в конце плавки добавляют раскислители: ферромарганец, ферросилиций, алюминии и другие элементы, сродство к кислороду у которых больше, чем у железа:

FeO + Мn→Fe + МnО,
2FeO + Si→2Fe + SiO 2 ,
3 FeO +2 Al→3 Fe + Al 2 O 3

При добавке раскислителей в металл они после раскисления частично остаются в металле в качестве примесей. Продукты раскисления также частично остаются, загрязняют металл неметаллическими включениями. Диффузионное раскисление стали ведется при помощи раскислителей, которые добавляются в шлак в виде порошков углеродистых веществ, молотого ферросилиция, порошка алюминия и т. п. Это приводит к понижению концентрации закиси железа в шлаке, а следовательно, и в металле, согласна рассмотренному выше закону распределения. В этом случае металл не загрязняется неметаллическими включениями. Для определения раскисленности стали в конце плавки берут технологические пробы.

Ссылка на основную публикацию
Adblock
detector