Конвертерный способ производства стали - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Конвертерный способ производства стали

Конвертерный способ производства стали

Источником теплоты при конвертерном способе являются химические реакции окисления элементов, входящих в состав чугуна. Окисление протекает в основном за счет кислорода дутья (воздуха, технически чистого кислорода, газо-кислородной смеси). В настоящее время дутье подается в различных конвертерах через днище, сбоку или сверху. В соответствии с этим применяются конвертеры различных конструкций.

Конвертеры с боковым дутьем имеют емкость 0,5–4т и используются в сталелитейном производстве с целью выплавки стали для фасонного литья.

На металлургических заводах в настоящее время применяют конвертеры с нижним (через отверстия в днище) и верхним (через горловину) дутьем емкостью от 5 до 60т.

До последнего времени применялись лишь конвертеры с нижним дутьем и использованием атмосферного воздуха; в результате выплавлялась сталь, насыщенная азотом и имеющая поэтому пониженную свариваемость, а также склонность к старению и хрупкому излому при низких температурах. В связи с этим недостатком конвертерный передел, являющийся первым способом массового производства литой стали, с конца прошлого века постепенно вытеснился мартеновским и электросталеплавильными способами.

Применение вместо воздуха технически чистого кислорода резко изменяет весь ход процесса, позволяет использовать наиболее дешевый передельный мартеновский чугун, переплавлять в конвертере до 20–30% металлолома (вместо 5–10% при воздушном дутье), получать сталь по качеству не уступающую мартеновской. Основным преимуществом конвертерного способа является его высокая производительность. Цех, имеющий 3–4 конвертера емкостью по 25т, может дать до 1300000 т. стали в год. Поэтому в ближайшие годы следует ожидать повышения доли конвертерного способам общем производстве стали.

Конвертер с нижним дутьем (рис.1) представляет сосуд грушевидной формы. Кожух конвертера сваривают из толстой листовой стали и футеруют внутри огнеупорным материалом. Снаружи в средней части конвертер имеет два цилиндрических выступа 1 и 2, называемых цапфами, которые служат для опоры и поворота конвертера. Одна из цапф (2) делается полой и соединяется с газопроводом 3. От цапфы к днищу 7 дутье подается через трубу 4 и коробку 5. В днище конвертера имеются отверстия — фурмы 6, через которые дутье подается в конвертер под давлением 1,8 — 2,5 атм.

При заливке жидкого чугуна и при перерывах процесса конвертер поворачивается на цапфах в положение, показанное на рис.2, с помощью зубчатой рейки, сцепленной с зубчатым колесом 8. После заливки чугуна пускают дутье, и конвертер поворачивают днищем вниз. Слой металла составляет при этом от 1/5 до 1/3 высоты цилиндрической части конвертера.

В конвертер с верхним дутьем кислород под давлением 4–12 атм подводят на поверхность металлической ванны через специальную водоохлаждаемую фурму 1 с медным соплом.

Рис.1– Бессемеровский конвертер

Рис.2 – Положение конвертера при заливке его чугуном

Кислород под напором струи частично проникает в металлическую ванну и окисляет ее, частично растекается по поверхности и обеспечивает сгорание в конвертере выделяющейся из металла окиси углерода, что увеличивает количество теплоты, выделяющейся в конвертере. При продувке кислородом (рис.3) применяют конвертеры с глухим дном, стационарные и вращающиеся.

Рис.3 – График изменения состава металла при продувке кислородом через днище

При стационарном положении конвертера во время продувки не достигается требуемое перемешивание металла, поэтому в зоне соприкосновения кислорода с металлом происходит резкое местное повышение температуры, вызывающее значительные потери железа в виде окислов, уносимых газами, удаляющимися через горловину конвертера. Помимо основного положения (при продувке), конвертер при повороте на цапфах устанавливают в вертикальное положение, при загрузке руды, скрапа (руда и скрап добавляются для некоторого охлаждения перегретого металла,кроме того, руда усиливает окисление примесей чугуна. Введение руды и скрапа увеличивает выход стали при плавке. Продукты горения при продувке отводятся через горловину конвертера, откидной камин 2 и газоотвод 3.

Сталь. Способы получения стали: конверторный, мартеновский и электроплавка.

Основным сырьем для получения стали служат передельный чугун, лом черных металлов и отходы производства.

Существует несколько способов получения стали: конверторный, мартеновский и электроплавка.

Конверторный способ основан на продувке сжатым воздухом расплавленного чугуна. При продувке кислород воздуха вступает в реакцию с примесями чугуна и окисляет их, в результате чего получается сталь. Для конверторного способа используют жидкий чугун, полученный в доменных печах и выдержанный в специальных металлоприемниках (миксерах).

Достоинствами конверторного способа являются: высокая производительность агрегатов, компактность оборудования и т. д.

К недостаткам этого способа относятся невозможность переработки большого количества стального и железного лома, а также передел чугунов только определенного химического состава.

Марки конверторной стали обозначают начальными буквами Б и Т, что значит бессемеровская и томасовская сталь.

Мартеновский способ вызван к жизни необходимостью перерабатывать стальной лом и отходы производства. Требовалось создать печь, в которой температура была бы настолько высокой, чтобы можно было плавить сталь и железо. Получение высокой температуры в мартеновской печи дало возможность не только использовать промышленные отходы в качестве шихтовых материалов, но и получать стали с весьма разнообразными свойствами. Мартеновская сталь поступает в виде листовой и сортовой, рельсов, отливок, заготовок для ковки и штамповки.

Плавка стали в электропечах дает возможность получать высококачественные стали. Сущность процесса заключается в очищении стали от шлаков и примесей в виде серы и фосфора.

Сера и фосфор в стали являются вредными примесями. Сера снижает литейные свойства, препятствует выходу газов из жидкой стали, вызывает ломкость. Фосфор снижает пластичность и вызывает хладноломкость (хрупкость) стали. Кремний повышает упругость и вязкость стали, марганец повышает износоустойчивость.

По химическому составу стали делят на углеродистые и легированные. Углеродистые стали, кроме углерода, содержат до 0,35% кремния, 0,8% марганца, 0,06% серы, 0,07% фосфора. Легированными называют такие стали, в состав которых специально введены легирующие элементы (хром, никель, вольфрам, ванадий, молибден, кобальт и др.) для сообщения стали требуемых свойств.

По назначению стали делятся на конструкционные, инструментальные и стали с особыми физическими свойствами.

По способу выплавки различают сталь обыкновенного качества, качественную и высококачественную.

Углеродистые стали обыкновенного качества содержат до 0,65-0,70% углерода и обозначаются буквами Ст и цифрой, которая является условным номером стали, например: Ст 2, Ст 3 и т. д. Чем больше номер стали, тем больше в ней содержится углерода и тем она прочнее и тверже.

Качественные углеродистые стали обозначают только цифрой, указывающей среднее содержание углерода в сотых долях процента. Например, в стали марки 15 содержится 0,15% углерода, в стали марки 20,-0,20% углерода.

Углеродистые инструментальные стали содержат от 0,65 до 1,35% углерода. Они более прочные, твердые, но менее вязкие.

Углеродистые инструментальные стали делятся на две группы: качественные и высококачественные.

Углеродистые инструментальные качественные стали обозначают буквой У и цифрой, указывающей на среднее содержание углерода в десятых долях процента. Например, в стали марки У8 содержится 0,8% углерода, а стали марки У13-1,3% углерода.

В марке углеродистой инструментальной высококачественной стали ставят букву А, например У9А, У13А.

Легированные стали обозначают буквами и цифрами. Первые две цифры обозначают среднее содержание углерода в сотых долях процента, следующие за ними буквы русского алфавита указывают на легирующие элементы, входящие в состав данной стали.

Легирующие элементы обозначают следующими буквами: X – хром, Н – никель, Д – медь, Г -марганец, С – кремний, В – вольфрам, К – кобальт, П – фосфор, Т – титан, Ф – ванадий, М -молибден, Ю – алюминий.

Если легирующего элемента содержится меньше 1%, то цифра после буквы не ставится. Например, марка стали 12ХН3, в составе которой находится 0,12% углерода, около 1% хрома и 3% никеля.

Если в конце марки стоит буква А, то это значит, что сталь относится к группе высококачественных, содержащих минимальное количество вредных примесей – серы и фосфора.

Читайте также:  Как покрыть медью сталь в домашних условиях

Высоколегированные стали с особыми свойствами выделены в отдельные группы и обозначаются буквой в начале марки, например: Ж -хромистые нержавеющие, Я – хромоникелевые нержавеющие, Р – быстрорежущие, Ш – шарикоподшипниковые, Е – магнитные. Так, марка ШХ15 обозначает хромистую шарикоподшипниковую сталь.

Конвертерный способ производства стали

Источником теплоты при конвертерном способе являются химические реакции окисления элементов, входящих в состав чугуна. Окисление протекает в основном за счет кислорода дутья (воздуха, технически чистого кислорода, газо-кислородной смеси). В настоящее время дутье подается в различных конвертерах через днище, сбоку или сверху. В соответствии с этим применяются конвертеры различных конструкций.

Конвертеры с боковым дутьем имеют емкость 0,5—4т и используются в сталелитейном производстве с целью выплавки стали для фасонного литья.

На металлургических заводах в настоящее время применяют конвертеры с нижним (через отверстия в днище) и верхним (через горловину) дутьем емкостью от 5 до 60т.

До последнего времени применялись лишь конвертеры с нижним дутьем и использованием атмосферного воздуха; в результате выплавлялась сталь, насыщенная азотом и имеющая поэтому пониженную свариваемость, а также склонность к старению и хрупкому излому при низких температурах. В связи с этим недостатком конвертерный передел, являющийся первым способом массового производства литой стали, с конца прошлого века постепенно вытеснился мартеновским и электросталеплавильными способами.

Применение вместо воздуха технически чистого кислорода резко изменяет весь ход процесса, позволяет использовать наиболее дешевый передельный мартеновский чугун, переплавлять в конвертере до 20—30% металлолома (вместо 5—10% при воздушном дутье), получать сталь по качеству не уступающую мартеновской. Основным преимуществом конвертерного способа является его высокая производительность. Цех, имеющий 3—4 конвертера емкостью по 25т, может дать до 1300000 т. стали в год. Поэтому в ближайшие годы следует ожидать повышения доли конвертерного способам общем производстве стали.

Конвертер с нижним дутьем (рис.7.1) представляет сосуд грушевидной формы. Кожух конвертера сваривают из толстой листовой стали и футеруют внутри огнеупорным материалом. Снаружи в средней части конвертер имеет два цилиндрических выступа 1 и 2, называемых цапфами, которые служат для опоры и поворота конвертера. Одна из цапф (2) делается полой и соединяется с газопроводом 3. От цапфы к днищу 7 дутье подается через трубу 4 и коробку 5. В днище конвертера имеются отверстия — фурмы 6, через которые дутье подается в конвертер под давлением 1,8 — 2,5 ати. В последнее время при уменьшенной площади сечения фурм давление повышают до 5,5 атм.

Для облегчения ремонта конвертера днище делается приставным.

При заливке жидкого чугуна и при перерывах процесса конвертер поворачивается на цапфах в положение, показанное на рис.7.2, с помощью зубчатой рейки, сцепленной с зубчатым колесом 8. После заливки чугуна пускают дутье, и конвертер поворачивают днищем вниз. Слой металла составляет при этом от 1/5 до 1/3 высоты цилиндрической части конвертера.

В конвертер с верхним дутьем кислород под давлением 4—12 ати подводят на поверхность металлической ванны через специальную водоохлаждаемую фурму 1 с медным соплом.

Рис.7.1 – Бессемеровский конвертер

Рис.7.2 – Положение конвертера при заливке его чугуном

Кислород под напором струи частично проникает в металлическую ванну и окисляет ее, частично растекается по поверхности и обеспечивает сгорание в конвертере выделяющейся из металла окиси углерода, что увеличивает количество теплоты, выделяющейся в конвертере. При продувке кислородом (рис.7.3) применяют конвертеры с глухим дном, стационарные и вращающиеся. При стационарном положении конвертера во время продувки не достигается требуемое перемешивание металла, поэтому в зоне соприкосновения кислорода с металлом происходит резкое местное повышение температуры, вызывающее значительные потери железа в виде окислов, уносимых газами, удаляющимися через горловину конвертера. Помимо основного положения (при продувке), конвертер при повороте на цапфах устанавливают в вертикальное положение, при загрузке руды, скрапа (руда и скрап добавляются для некоторого охлаждения перегретого металла, кроме того, руда усиливает окисление примесей чугуна. Введение руды и скрапа увеличивает выход стали при плавке. Продукты горения при продувке отводятся через горловину конвертера, откидной камин 2 и газоотвод 3.

Рис.7.5 – График изменения состава металла при продувке кислородом через днище

Бессемеровский конвертер футеруют кислым огнеупорным кирпичом (динасом). Динасовый кирпич разъедается основными шлаками, поэтому в бессемеровском конвертере могут перерабатываться лишь кремнистые чугуны, дающие кислый шлак. Чугун из доменной печи или миксера поступает в ковш, а из него вливается в конвертер при температуре около 1300°. Выгорание примесей при продувании воздуха происходит бурно с выделением большого количества тепла. При этом наблюдается определенная последовательность выгорания примесей.

Первый период. Основную массу залитого в конвертер чугуна составляет железо (около 93% по весу). Поэтому кислород преимущественно окисляет железо.

В небольшом количестве окисляются также и примеси чугуна (С, Si, Mn).

Образующаяся закись железа частью переходит в шлак, остальная часть растворяется в ванне металла и вступает во взаимодействие с кремнием и марганцем.

Закись железа и закись марганца соединяются с окисью кремния и образуют слой шлака на поверхности ванны, поэтому первый период называют периодом шлакообразования.

Первый период при продувке кислородом продолжается около 2мин. и сопровождается повышением температуры металла до 1550— 1750° вследствие выделения большого количества теплоты при окислении железа, кремния и марганца.

Второй период. Этот период характеризуется появлением над горловиной конвертера ослепительно белого пламени и усилением шума. Оба эти явления— следствие окисления углерода. В ванне окисление углерода протекает при его взаимодействии с закисью железа.

При продувке через днище окись углерода сгорает в атмосфере (вне конвертера) за счет кислорода воздуха с образованием яркого пламени.

При дальнейшей продувке шум стихает, пламя уменьшается и исчезает и появляется бурый дым, это свидетельствует о завершении выгорания примесей и интенсивном окислении железа, поэтому в конце второго периода продувку заканчивают.

На рис.7.5 приведен график изменения состава чугуна (с низким содержанием кремния) и шлака при продувке чистым кислородом через днище. Время продувки в зависимости от емкости конвертера составляет от 5 до 10мин., на вспомогательные операции (заливка чугуна, загрузка ферросплавов и т. д.) расходуется до 15 мин.

В настоящее время освоены и применяются методы остановки продувки на заданном содержании углерода, при этом продувка прерывается во втором периоде до появления бурого дыма.

По окончании продувки производят раскисление стали.

Необходимость раскисления вызывается тем, что закись железа (FeO), растворенная в стали, придает ей красноломкость (хрупкость в горячем состоянии). Раскисление производится элементами, обладающими большим сродством к кислороду, чем железо. Такими элементами являются марганец и кремний, содержащиеся в зеркальном чугуне, ферромарганце и ферросилиции, а также алюминий.

Готовый металл выливают в ковш и разливают по изложницам (рис.7.4).

При разливке стали сверху (рис.7.4, а ) каждую изложницу заполняют сталью отдельно. При этом отверстие стакана ковша должно быть установлено по центру изложницы. При сифонной разливке (рис.7.4, б ) сталь из ковша 1 поступает в центральный стояк 2 и отводится из него в несколько изложниц 4 по литниковым каналам 5, расположенным в поддоне6.

Рис.7.4 – Разливка стали в изложницы: а — сверху; б — снизу (сифоном)

Сталь, разлитая сверху, имеет меньше неметаллических включений, чем сифонная. Однако последняя получается с более чистой поверхностью.

При затвердении стали в изложнице происходит усадка металла. В первую очередь затвердевают слои металла, прилегающие к стенкам изложницы. Внутренняя часть слитка некоторое время после заполнения остается жидкой. Там, где металл дольше находится в жидком состоянии, образуется усадочная раковина (обычно по оси слитка, ближе к его головной части).

Усадочную раковину в слитке можно несколько уменьшить, если замедлить охлаждение стали в верхней части изложницы. Для этого применяют прибыльные надставки 3 (см. рис.7.4), футерованные изнутри огнеупорными материалами. Сталь в надставке затвердевает в последнюю очередь. Это способствует уводу усадочной раковины в головную часть слитка.

Томасовский способ получения стали появился вследствие необходимости переработки фосфористых чугунов, которые получаются из фосфористых руд, достаточно распространенных в природе.

Для перевода в шлак окиси фосфора (Р2О5), образующейся при продувании чугуна, необходимо применять основной флюс — известь. Однако в бессемеровский конвертер известь загружать нельзя, так как она будет разъедать кислую динасовую футеровку.

Для переработки фосфористых чугунов применяются конвертеры с основной футеровкой из свежеобожженного доломита (состоящего преимущественно из СаО и MgO) или из хромомагнезита.

В последние годы все возрастающее распространение получает способ продувки кислородом фосфористых чугунов сверху в конвертерах с глухим дном. В конвертер сначала загружается известь в количестве 4 — 10% от веса чугуна (в зависимости от количества фосфора и серы в последнем), а затем производится заливка самого чугуна при температуре 1250—1300°. В ходе процесса делают присадку железной руды и скрапа.

Проникающий в ванну кислород окисляет железо до закиси и немедленно начинается выгорание всех примесей: кремния и марганца, углерода, а также фосфора.

При переработке высокофосфористых чугунов с целью предотвращения перехода фосфора из шлака в металл производят спуск высокофосфористого шлака и загрузку дополнительных порций извести.

На рис.7.5 приведен график изменения состава металла при переработке высокофосфористого чугуна в 30-тонном вращающемся конвертере; точки а и б соответствуют времени спуска шлака, точка в выпуске стали. Полученный фосфористый шлак является ценным удобрением, поэтому он считается не отходом, а вторым продуктом плавки.

По окончании продувки производят раскисление стали (в конвертере или в ковше).

Наличие горячего высокоизвестковистого шлака обеспечивает возможность более быстрого окисления и ошлакования фосфора по сравнению с углеродом (при продувке воздухом фосфор переходит в шлак после выгорания углерода), поэтому при продувке кислородом сверху можно сохранить содержание углерода на нужном пределе. Например, из графика рис.7.5 видно, что процесс продувки закончен при содержании 0,5%С и 0,25%Р.

Качество конвертерной стали, продутой кислородом, не уступает мартеновской, поэтому она используется наравне с мартеновской в различных отраслях промышленности вплоть до автомобильной для изготовления деталей методом глубокой вытяжки и др.

Рис.7.5 – График изменения состава металла при переработке высокофосфористого чугуна

ПРОИЗВОДСТВО СТАЛИ

Стали железоуглеродистые сплавы, содержащие практически до 1,5% углерода. Кроме углерода, сталь всегда содержит в небольших количествах постоянные примеси: марганец (до 0,8 %), кремний (до 0,4 %), фос-фор (до 0,07 %), серу (до 0,06 %), что связано с особенностями технологии ее выплавки. В технике широко применяют также легированные стали, в состав которых для улучшения качества дополнительно вводят хром, никель и другие элементы. Существует свыше 1500 ма-рок углеродистых и легированных сталей–конструк-ционных, инструментальных, нержавеющих и т. д.

Разработано несколько способов получения стали из чугуна.

Первыми способами получения стали из чугуна были кричный (12- 13 века), пудлинговый (конец 18 века), бессемеровский (1856 г.), томассовский. Их недостатками являются невысокое качество стали и ограниченность сырьевой базы, так как можно было использовать лишь некоторые чугуны ( с определенным содержанием кремния, серы и фосфора).

Примерно с начала 20 – го столетия массу стали выплавляли мартеновским способом (открытие 1864 г)- менее производительным, но позволяющим выплавлять более качественную сталь.

В 50-х годах 20 столетия появился кислородно – конвертерный процесс.

Одним из прогрессивных способов получения сложных и высоколегированных сталей является электрометаллургический: плавка в электрических дуговых и индукционных печах.

Сталь особо высокого качества выплавляют в вакуумных электрических печах, а также путем электрошлакового, плазменного переплава, электронно-лучевой плавки.

Кислородно – конвертерный процесс

Сущность кислородно -конвертерного процесса заключается в том, что налитый в плавильный агрегат (конвертор) расплавленный чугун продувают струей кислорода воздуха. Углерод, кремний и другие примеси окисляются и тем самым чугун переделывается в сталь.

Этот процесс осуществляется в конверторе, схема которого представлена на рис.

Рисунок . Схема кислородного конвертора:

1 — глуходонный конвертор; 2 фурма для вдувания кислорода; 3 летка для слива стали

Его грушевидный корпус (кожух) сварен из листовой стали, внутри он футерован основным огнеупорным материалом ( у кожуха магнезит или хромомагнезит, внутренний- рабочий слой – доломитосмоляная масса или кирпич).

Конвертор устанавливают на опорных станинах при помощи цапф, и он может поворачиваться вокруг оси, что необходимо для заливки чугуна и других технологических операций, рис. .

Рисунок. Технологические операции кислородно-конверторной плавки:

1- загрузка стального скрапа; 2 – заливка расплавленного чугуна; 3 продувка кислородом; 4 – загрузка извести и железной руды с началом продувки и по ходу плавки; 5 – выпуск металла; 6 выпуск шлака

Вместимость современных конвертеров дости-гает 250 – 400 т.

Перед старыми способами получения стали бессемеровский способ имел два неоспоримых преимущества – очень высокую производи-тельность, отсутствие потребности в топливе. Недостатком бессемеров-ского процесса является ограниченная гамма чугунов, которые могут перерабатываться этим способом, так как при динасовой футеровке не удается удалить из металла такие примеси, как серу и фосфор, в том случае, если они содержатся в чугуне.

Кислород вдувают в конвертер вертикальной трубчатой водоохлаждаемой фурмой, опускаемой в горловину конвертера, но не доходящей до уровня металла на 1200–2000 мм. Таким образом, кислород не про-дувается через слой металла (как воздух в старых конвертерных процессах), а подается на поверхность залитого в конвертер металла. Это дает возможность перерабатывать чугуны с различным содержанием примесей, а также не только вводить в конвертер жид-кий металл, но и добавлять к нему для охлаждения скрап или желез-ную руду (количество скрапа на некоторых заводах доводят до 30 % мессы металла).

Началом очередного цикла в кислородном конвертере служит завалка в него лома и других металлических отходов; на некоторых за-водах в конвертор вводят железную руду. После введения этих добавок в конвертер начинают заливать жидкий чугун, подвозимый из миксера в чугуновозных ковшах. После того как металл займет 1/5 объ-ема конвертера, загружают известь, необходимую для связывания фосфора; в конвертор опускают водоохлаждаемую фурму и подают в нее технический кислород. В конвертере начинается интенсивный процесс окисления металла кислородом, который прежде всего, встре-чаясь с частичками железа, окисляет их по реакции

Кроме железа, окисляются и примеси, но окисление их может про-исходить не только кислородом, но и перешедшей в шлак закисью железа по реакциям

В уравнениях реакций химические элементы, находящиеся в ме-талле, заключены в квадратные скобки, а находящиеся в шлаке, — в круглые.

Все эти реакции протекают в конвертере с кислородным дутьем одновременно, причем последняя реакция способствует перемешива-нию металла.

После 15–16-минутной продувки поднимают фурму, наклоняют конвертер, берут пробу металла на анализ и скачивают большую часть шлака ; это занимает 7–8 мин; за это время экспресс-анализом определяют основные параметры стали, затем конвертер вновь ставят в вертикальное положение, опускают фурму и вторично продувают кислородом несколько минут в зависимости от данных анализа и за-данной марки стали.

В это время продолжаются реакции окисления и интенсивно идут реакции шлакообразования

и многие другие физико-химические процессы; в конце вторичной продувки в конвертер вводят раскислители ( ферромарганец и ферросилицием). Марганец и кремний реагируют с растворенным кислородом; их окислы образуют с окислами железа жидкую шлаковую фазу, что помогает вывести продукты раскисления из металла.

Затем фурму вновь подни-мают, конвертер наклоняют, бе-рут контрольную пробу метал-ла, термопарой погружения из-меряют его температуру, после чего сталь выпускают через бо-ковую летку в разливочный ковш; после слива металла ска-чивают оставшийся шлак и за-делывают выпускное отверстие. Весь технологический цикл плавки занимает 50–60 мин, а продолжительность продувки кислородом – 18–30 мин.

Недостатком кислородно-конвертерного способа получения стали является большое пылеобразование, обусловленное обильным окисле-нием и испарением железа; угар металла составляет 6–9 %, что зна-чительно больше, чем при других способах получения стали. Это требует обязательного сооружения при конвертерах сложных и доро-гих пылеочистительных установок.

Конвертерное производство стали

Химические процессы сталеплавильного производства

Классификация сталей

Свойства сталей, выплавляемых в различных агрегатах, разнообразны и зависят от большого числа факторов: химического состава, способа и технологии выплавки, способа разливки, наличия вредных примесей, технологии обработки давлением, термообработки и т.п.

По способу производства – стали различают следующим образом: бессемеровская, томасовская, кислородно-конвертерная, мартеновская, электросталь, тигельная, сталь электрошлакового переплава, сталь, получаемая в вакуумных, индукционных и дуговых печах.

По назначению:

– конструкционные – применяются для изготовления деталей машин, станков, металлоконструкций и каркасов зданий;

– инструментальные – для изготовления резцов, штампов, фрез, мерительного инструмента и т.д.

– Стали специального назначения:

– нержавеющие, жаропрочные, трансформаторные, шарикоподшипниковые, броневые, рельсовые и т.д.

По качеству (отличаются содержанием вредных примесей S и P):

– стали обыкновенного качества,

По химическому составу:

– углеродистые (низко-, средне-, высоко-.), легированные (низко-, средне-, высоко-).

В сталеплавильных печах кислород наиболее быстро окисляет железо, концентрация которого значительно превышает концентрацию других элементов в сплаве:

2Fe + O2 → 2FeO + Q

Образующаяся закись железа FeO хорошо растворима, как в металле, так и в шлаке и играет роль основного носителя кислорода.

Кремний, марганец, углерод и другие примеси стали, обладают более высоким сродством к кислороду, чем железо, и поэтому они отбирают кислород у железа, восстанавливая его. Окисление примесей идет за счет газообразного кислорода, а также закиси железа по реакции:

Si + 2FeO → SiO + 2Fe

Mn + FeO → Mn + Fe

Все эти реакции идут легко за счет большого количества кислорода и перемешивания. Окисление углерода имеет наиболее важное значение: достижение его заданного значения определяет продолжительность плавки. Кремний окисляется практически полностью. Марганец окисляется примерно на 70%. Фосфор удаляется путем ошлаковывания (перехода в шлак).

P + 5FeO + 3CaO = P2O5 3CaO + 5 Fe + Q

За всю плавку в шлак переходит до 95-98% фосфора шихты. Сера удаляется значительно хуже, чем фосфор, до 50% остается в чугуне.

FeS + CaO = CaS + FeO.

Удаление серы затруднено наличием в шлаке (до 20%) закиси железа. Поэтому для получения стали в кислородном конвертере применяют чугун с ограниченным содержанием серы (до 0,07%).

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом. Корпус конвертера сварен из листовой стали, толщиной до 100 м. Внутренняя футеровка двух или трехслойная, общей толщиной 700-1000 мм. – изготовлена из основных огнеупорных материалов (магнезит и доломит). Стойкость футеровки 200-600 плавок. Поворот конвертера осуществляется с помощью цапф.

Вместимость конвертера 70-350 т. Давление воздуха 9-14 атм.

Первые опыты по разработке этого способа в 1933-34 гг. осуществил А.И. Мозговой. В промышленности его стали применять в 1952-1953г. В настоящее время он получил широкое распространение.

Рис. 2.2. Схема кислородного конвертора:

1- жидкий чугун; 2 – кислородная фурма; 3- летка; 4 – сопло;

5 – горловина; 6 – футеровка; 7 – стальной кожух.

Шихта: жидкий передельный чугун, стальной лом, известь, железная руда, бокситы. Плавиковый шпат и известь используют для наводки шлака. Бокситы, плавиковый шпат – для разжижения шлака.

Кислородно-конвертерным способом выплавляют спокойную, кипящую и полуспокойную стали. Во избежание большого угара раскислители вводят не в конвертер, а на струю металла при выпуске плавки. Выплавка легированных сталей в конвертерах затруднена, в них выплавляют в основном низколегированные стали.

Другие конверторные способы.

Бессемеровский и томассовский процессы – первые конверторные способы: Бессемеровский (Бессемер, 1855-1856г. Англия) и томассовский (Томас, 1878г.Англия) до начала ХХ века были главными способами производства стали.

Сущность способов: сталь получают, окисляя примеси расплавленного чугуна, путем продувки снизу через фурмы, расположенные в днище.

Бессемеровский конвертор имеет кислую футеровку из динаса.

Томассовский – основную футеровку (долмит). Оба способа у нас в стране не применяются.

Дата добавления: 2014-12-07 ; Просмотров: 415 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Производство стали

Производство стали в кислородных конвертерах. Сталь отличается от чугуна меньшим содержанием углерода (до 2,1 %), кремния (до 0,4 %), марганца (до 0,8 %), примесей серы (до 0,04 %) и фосфора (до 0,04 %). Исходными материалами для получения стали являются передельный чугун и стальной лом (скрап). Сутью передела чугуна в сталь является уменьшение содержания углерода и других входящих в чугун элементов. В настоящее время сталь получают преимущественно в кислородных конвертерах, мартеновских и электрических печах. Кислородно-конвертерным и мартеновским способами выплавляют около 80 % всей стали.

Кислородно-конвертерный процесс заключается в продувке жидкого чугуна кислородом. Сталь, полученная этим способом, наиболее дешевая и не уступает по качеству мартеновской. Кислородный конвертер представляет собой стальной сосуд грушевидной формы, внутренняя поверхность которого облицована алюмосиликатным кирпичом (рис. 2.3). Конвертеры изготовляют емкостью на 100—350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали составляет 50—60 м 3 . Перед началом работы конвертер поворачивают на цапфах вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % объема металлоломом, затем заливают жидкий чугун, нагретый до температуры 1250—1400 °С, возвращают конвертер в исходное вертикальное положение, подают кислород и добавляют шлакообразующие материалы: известь, плавиковый шпат и железную руду, которая ускоряет процесс окисления. При продувке конвертера техническим кислородом углерод и другие примеси окисляются в процессе дутья и благодаря присутствию в руде оксида железа FeO. При этом образуется химически активный шлак с необходимым содержанием окиси кальция СаО, благодаря чему происходит удаление серы. В момент, когда содержание углерода достигает количества, заданного для выплавляемой стали определенной марки, подачу кислорода прекращают, конвертер поворачивают и выливают вначале сталь, а затем шлак.


Рис. 2.3. Кислородный конвертер 1 — горловина для загрузки; 2 — водоохлаждаемая фурма; 3 — выпускное отверстие

Для уменьшения содержания кислорода в стали при выпуске из конвертера ее раскисляют, т. е. вводят в нее элементы с большим, чем у железа, сродством к кислороду — Mn, Si, Al. Взаимодействуя с кислородом и оксидом железа FeO, забирая у него кислород, они образуют нерастворимые оксиды MnО, SiO2, Al2O3, переходящие в шлак:
0,5O2 + Mn = MnO; O2 + Si = SiO2;
1,5O2 + 2Al = Al2O3; FeO + Mn = MnO + Fe;
2FeO + Si = SiO2 + 2Fe; 3FeO + 2Al = Al2O3 + 3Fe.

По степени раскисления различают сталь кипящую (кп), спокойную (сп) и полуспокойную (пс). Кипящая сталь — наименее (слабо) раскисленная. В такой стали реакция образования окиси углерода C + O = СО не прекращается до ее полного отверждения: во время разливки металл продолжает «кипеть» из-за выделения пузырей СО. В слитке образуются газовые раковины, которые завариваются впоследствии при обработке стали давлением. Выход годного металла при производстве кипящей стали выше, чем при производстве других сталей, так как в этом случае не образуется усадочной раковины, а сама сталь обходится дешевле. Спокойная сталь получается при полном раскислении, когда выделение СО прекращается. Эта сталь наиболее качественная, но и наиболее дорогая. В верхней части слитка образуются большая усадочная раковина и рыхлота, что уменьшает выход годного металла. Полуспокойная сталь получается при неполном раскислении.

Производительность кислородного конвертера емкостью 300 т достигает 400—500 т/ч, в то время как производительность мартеновских и электрических печей не превышает 80 т/ч. Благодаря высокой производительности, простоте устройства, отсутствию необходимости в топливе и малой металлоемкости кислородно-конвертерный способ становится основным способом производства стали.

Ссылка на основную публикацию
Adblock
detector