Шпиндель для сверлильного станка своими руками - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Шпиндель для сверлильного станка своими руками

Сверлильный станок своими руками

  • Георгий Меньшиков 6 ноября 2017
  • Самоделки для гаражаинструмент


Собираем настольный сверлильный станок с асинхронным двигателем своими руками.

Деталь (1) для станка, который собрался делать, я нашел на шоссе, едва не пропоров об нее колесо.

Остановился, чтобы выбросить ее в кювет, покрутил в руках и бросил … в багажник.

Подошла идеально, словно ее специально делали для моего станка. Осталось только приделать к ней столик и проточить стойку, чтобы надеть на нее каретку от микроскопа (2). К подвижной части каретки, на кронштейне, прикрепил двигатель (3) с патроном на его валу. На правой ручке каретки сделал рычаг сверления (4), а на левой установил барабан со спиральной пружиной (5), поднимающей подвижную часть каретки вместе с мотором в верхнее положение.

Глубину сверления можно заранее выставить по шкале, снабженной нониусом, путем вращения гайки (6) на винте, прикрепленном к подвижной каретке.

В исходном положении сверло установлено над отверстием в столе основания, что удобно при сквозном сверлении деталей.

При необходимости, сверлильный блок (мотор с кареткой) можно поднять по стойке или повернуть.

Мотор станка — асинхронный двигатель 6 ватт 1400 об./мин. Его обмотки включены инверсно, чтобы увеличить крутящий момент на валу. Пусковая обмотка включается в сеть, а рабочая подключена через конденсатор. Такое включение вполне допустимо, так как при сверлении двигатель работает недолго и не греется.

На стойке станка укреплен небольшой пластмассовый корпус (7) к которому подведены шнур питания и кабель от двигателя. Там же находятся: выключатель, конденсатор и разъем для педали. В нижнем положении выключателя двигатель включен в сеть, а в верхнем подключается педаль пуска.

Работа с педалью очень удобна. При сверлении обе руки заняты. Одна — удерживает деталь, а вторая управляет подачей сверла.

При вращающемся сверле трудно прицелиться в накерненную точку.

Посмотрите на фото. Где кернение, а где сверление! С педалью таких ошибок нет. Сверло опускается точно в накерненое место сверления, а затем педалью включается двигатель. Кроме того, педалью можно быстро выключить двигатель в аварийной ситуации, например при заедании сверла в детали.

Изготавление патрона станка

В хорошем станке сверло не должно бить, а сделать это очень трудно.

Патрон на вал двигателя просто так не установишь. Необходим переходник с конического отверстия патрона на цилиндрический вал мотора. Изготовить конический переходник с нужной точностью на обычном токарном станке практически невозможно, поэтому было найдено другое решение проблемы.

Прежде всего, нужно изготовить упрощенный переходник.

На чертеже показан переходник к патрону В10 с укороченным конусом Морзе, в котором не нужна коническая поверхность. Сделав такой переходник, обязательно проверьте его сопряжение с валом мотора.

Затем нужно изготовить или подобрать стержень, диаметр которого точно соответствует валу мотора. Проверьте сопряжение стержня с изготовленным переходником. При изготовлении станка таким стержнем служила патимиллиметровая фреза.

Теперь нужно просверлить дно патрона сверлом несколько большего диаметра, чем стержень.

Слегка, тонким слоем машинного масла, протрем стержень, чтобы он не склеился с переходником. Через просверленное в патроне отверстие вставляем стержень в патрон и зажимаем его как сверло.

Обмазываем переходник густым эпоксидным клеем (например, Поксиполом, который продается в любом хозяйственном магазине) и по стержню вдвигаем его в патрон.

Переходник надо вставить до упора, но не вбивайте его, чтобы не сдвинуть стержень в кулачках патрона. Провернем раз-другой переходник на стержне, чтобы клей растекся, и оставим сборку сушиться. Через сутки вынимаем стержень и патрон можно одеть на вал двигателя.

В результате мы получили идеальное осевое совпадение кулачков патрона с осью двигателя. При склеивании ось переходника сцентрована с кулачками патрона технологическим стержнем, а все перекосы и зазоры между конусом патрона и переходником заполнены клеем.

Позже стало понятно, что требования к точности изготовления переходника, кроме допуска на отверстие, можно снять, так как клей компенсирует погрешности изготовления (кстати, не только переходника, но и отверстия в патроне). Именно так и был изготовлен переходник к настольному станку.

Автор статьи “Сверлильный станок своими руками” Георгий Меньшиков

§ 29. Устройство настольного сверлильного станка

Помимо ручной дрели, электроинструментов, для высверливания отверстий предназначены сверлильные станки.

Обычно школьные мастерские оборудованы настольными сверлильными станками. Основанием настольного сверлильного станка (рис. 139) служит массивная деталь — станина 6, в которой закреплена вертикальная винтовая колонна 4. На станине имеется стол 9 с прорезями для крепления тисков и других приспособлений.

В передней части станины расположены кнопки включения 7 вращения сверла по часовой стрелке и против часовой стрелки, а также кнопка выключения 8, окрашенная в красный цвет.

Рис. 139. Устройство сверлильного станка: 1 — шпиндельная бабка с электродвигателем; 2 — ручка фиксирования шпиндельной бабки; 3 — рукоятка подъёма и опускания шпиндельной бабки; 4 — винтовая колонна; 5 — рукоятка подачи шпинделя с патроном; 6 — станина; 7 — кнопки включения; 8 — кнопка выключения; 9 — стол; 10 — сверло; 11 — патрон; 12 — шкала установки глубины сверления; 13 — шпиндельная коробка; 14 — винт натяжения ремённой передачи; 15 — ремённая передача; 16 — кожух ремённой передачи.

На винтовой колонне расположена шпиндельная бабка 1, в которой смонтированы электродвигатель и другие агрегаты. Вращение вала электродвигателя передаётся через ремённую передачу 15 на находящийся в шпиндельной коробке 13 шпиндель — вал, на котором закреплён патрон 11 со сверлом 10. Ремённая передача в целях безопасности ограждена кожухом 16.

Для того чтобы поднять на нужную высоту шпиндельную бабку — верхнюю часта станка, нужно вращать рукоятку 3, после чего зафиксировать необходимое положение ручкой 2.

Для закрепления сверла предназначен трёхкулачковый патрон (рис. 140). Сверло 1 вставляют в кулачки 2 и вращают кольцо 4 до соприкосновения кулачков со сверлом. Затем кулачки плотно сжимают, вставив ключ 6 в отверстия втулки 3 патрона и поворачивая его по часовой стрелке.

Рис. 140. Трёхкулачковый патрон сверлильного станка: 1 — сверло; 2 — кулачки; 3 — втулка; 4 — кольцо с насечкой; 5 — шпиндель; 6 — ключ

После этого на короткое время включают станок, чтобы проверить правильность установки сверла (с разрешения учителя). Остриё правильно установленного сверла при вращении не должно описывать окружность. Если это всё-таки происходит, то необходимо выключить станок, ослабить ключом сверло в патроне и вновь закрепить его правильно.

Заготовку для сверления закрепляют в машинных тисках (рис. 141), которые устанавливают на стол станка.

Рис. 141. Машинные тиски: 1 — основание; 2 — неподвижная губка; 3 — подвижная губка; 4 — винт; 5 — рукоятка

В некоторых случаях такие тиски не используют, а удерживают заготовку ручными тисками (ручным зажимом) (рис. 142).

Рис. 142. Ручные тиски: 1 — зажимы; 2 — винт; 3 — гайка; 4 — ось

При этом под заготовку подкладывают деревянный брусок или небольшой отрезок доски, чтобы не повредить сверлом стол станка (рис. 143).

Рис. 143. Сверление тонколистовой заготовки на подкладной доске: 1 — подкладная доска; 2 — тонколистовая заготовка; 3 — шпиндель станка; 4 — ручные тиски

Шпиндель станка с патроном и сверлом опускают к заготовке, поворачивая рукоятку 5 (см. рис. 139) с помощью реечной передачи, расположенной в шпиндельной коробке. Сверление выполняют, плавно нажимая на рукоятку подачи, не прикладывая к ней большого усилия. В конце сверления нажим на сверло ослабляют. Просверлив отверстие, вращают рукоятку по часовой стрелке, чтобы поднять шпиндель в верхнее положение, и выключают станок.

На предприятиях применяют более мощные вертикально-сверлильные и горизонтально-сверлильные станки. На автоматических линиях без участия человека работают многошпиндельные станки-автоматы, которые могут одновременно сверлить десятки отверстий. Обслуживают станки рабочие сверловщики.

Правила безопасной работы

  1. Включать сверлильный станок можно только с разрешения учителя.
  2. При работе на станке следует пользоваться защитными очками, волосы убрать под головной убор, все пуговицы рабочего халата застегнуть.
  3. Не отходить от включённого станка.
  4. Не класть посторонние предметы на стол станка.
  5. Перед началом сверления следует проверить надёжность закрепления заготовки в тисках.
  6. Сверло в патроне должно быть закреплено надёжно, без перекосов.

Практическая работа № 27

Ознакомление с устройством настольного сверлильного станка, сверление отверстий на станке

  1. По рисунку 139 ознакомься с устройством сверлильного станка.
  2. Запиши в рабочую тетрадь основные характеристики станка.
  3. Осмотри станок в мастерской и ознакомься с его основными частями. Запиши в рабочую тетрадь названия основных частей.
  4. Получи заготовку у учителя или подготовь заготовку детали твоего проектного изделия. Разметь центры будущих отверстий. Надёжно закрепи заготовку в машинных или ручных тисках.
  5. Подбери сверло нужного диаметра. Установи сверло в патроне и проверь правильность его установки.
  6. Просверли размеченные заготовки.
  7. Проверь качество сверления по чертежу.
Читайте также:  Что такое шарошка по металлу

Новые слова и понятия

Сверлильный станок, станина, электродвигатель, шпиндель, патрон, машинные тиски, ручные тиски.

СВЕРЛИЛЬНЫЙ СТАНОК ИЗ ПРИНТЕРА

Хотите, верьте, хотите, нет – материальная составляющая, а на её основе и идея изготовления этого устройства возникла благодаря коту Тихону, который однажды, превысив нормы дозволенного, юркнул в большой, заросший деревьями овраг и на призывы вернуться не реагировал. Пришлось искать. Завидев сердитого хозяина, он отбежал к одному из густых кустов и демонстративно принялся что-то в его глубине разглядывать. Любопытство заразно – заглянул под куст. А там стоит струйный принтер. Никогда не буду утверждать, что у животных только инстинкты 🙂

Epson Stylus Photo R220. Разобрал его полностью, до последнего винтика. Особое внимание привлекла полированная стальная направляющая с пластмассовой кареткой.

Увидел в этом узле именно то, что даст возможность попробовать собрать миниатюрный сверлильный станок. Для придания этому проекту дополнительного интереса, изготовление решил вести по максимуму из деталей разобранного принтера.

Начинал с основания, а в его качестве здесь лучше всего выступит блок питания, который аккуратно вынимается из металлического корпуса, а сам корпус рихтуется, удаляется ржавчина, железо обезжиривается, например уайтспиритом и красится

Возвращаем плату с БП в корпус, а к его днищу приделываем ножки. Желательно резиновые, чтобы при работе собранное устройство не елозило по столу.

Из верхней части пластмассового бокса, в котором и находился металлический корпус с блоком питания, изготавливается рабочий стол будущей сверлилки. Стальная направляющая режется пополам, на конце с выступом нарезается резьба, подбирается гайка и пластмассовая прокладка (будет находиться между нижней частью стола и крышкой корпуса БП). В нижней части стола два отверстия для крепления к крышке, а в верхней отверстие под установку половины стальной направляющей. На боковой стороне стола установлен пластмассовый хомут для фиксации резиновой шайбы, центрирующей положение направляющей (которая на фото уже одета на направляющую). Имелась в данном «наборе» и подходящая пружина.

Устанавливаем направляющую на стол и соединяем винтами с крышкой БП.

Ставим собранный элемент конструкции на корпус блока питания и прикручиваем тремя винтами (два видно, третий с противоположной стороны). Отверстия и резьба под винты делаются предварительно.

Теперь дело за подвижной частью. На фото каретка, от неё необходимо ровно отрезать ножовкой по металлу ненужное, места отреза указаны жёлтыми линиями. Их три.

Это осталось первоначально, но ещё не всё.

Также аккуратно вырезаем среднюю часть между отверстиями, через которые будет проходить направляющая.

Вот что должно остаться. Для придания необходимой жёсткости полученной конструкции, обращённый к нам проём, необходимо заклеить плоской крышкой при помощи качественного клея.

Далее из большего по размерам металлического профиля отрезаем кусок длиной 130 мм из которой изготовим консоль, на которой смонтируем уже изготовленный корпус и электродвигатель.

Для этого на отрезанной части профиля сверлим все необходимые для крепления отверстия. Три левых для установки электродвигателя (два по 3 мм, среднее по размеру диаметра цилиндрического пояска с валом), правое отверстие диаметром на 2 мм больше диаметра стальной направляющей. Оставшиеся распределяются так: два диаметром 4 мм необходимы для крепления консоли к днищу пластмассового корпуса при помощи винтов М4 с гайками. Несколько большее по диаметру отверстие, расположенное между ними, необходимо для малой направляющей (диаметром 5 мм).

Также необходимо изготовить упор рычага с резьбовыми отверстиями М3 для крепления к консоли. Такой упор можно сделать и на самой консоли, из продолжения её стороны за отверстием под стальную направляющую. Для этого заготовку для консоли нужно отрезать на 20 мм длиннее, отрезать на это расстояние боковые загибы профиля и загнуть данный конец консоли вниз, затем просверлить в нём отверстие диаметром 2,5 мм и нарезать резьбу М3 (для крепления рычага подачи).

Консоль соединила электродвигатель с корпусом, а для того чтобы в дальнейшем закрыть и малый проём вырезается соответствующего размера ещё одна крышка, в которой сверлиться два отверстия и через которые она будет установлена по месту при помощи двух небольших саморезов.

Вид со стороны внутренней полости консоли.

От малого металлического профиля отрезается две заготовки, одна длиной 150 мм, другая 60 мм. Из большей заготовки делается рычаг, для этого сверлиться два сквозных трехмиллиметровых отверстия на одной из сторон профиля. Одно с краю, второе примерно в 40 мм от него.

Также необходима тяга длиной около 60 мм с отверстиями в 3 мм по краям, она вырезается из подходящего куска пластмассы (лучше не плоского, а как на фото).

Рычаг с тягой в сборе.

А это фиксатор опускания подвижной части сверлильного станка.

Его составляющие: вторая направляющая диаметром 5 мм и длиной 140 мм; металлический хомут с радиусом внутреннего изгиба равным половине диаметра металлической направляющей, с резьбовыми отверстиями М4 по краям; винт М4 с пластмассовой головкой – ручкой; резиновые центрирующие упоры; непосредственно сам упор изготовленный из 60 мм отрезка большого профиля. Все необходимые отверстия и прорези в нём делаются под сопрягающие элементы. Далее посмотрите видео с непосредственной сборкой подготовленных узлов сверлильного устройства.

Видео

Электродвигатель подключается к первому и третьему выводам (справа налево) на плате блока питания. Перелистнуть страницу истории, с классики изготовления миниатюрных сверлильных устройств из школьных микроскопов на изготовление из принтеров, попытался Babay.

Обсудить статью СВЕРЛИЛЬНЫЙ СТАНОК ИЗ ПРИНТЕРА

Сверлильный станок для печатных плат своими руками

Сверление отверстий в печатных платах процесс долгий и трудоемкий, требующий высокой точности, ведь от качества отверстий будет зависеть качество печатной платы. Надоело мне сверлить платы ручной электродрелью, поэтому решил сделать небольшой сверлильный станок специально для печатных плат. Конструкцию станка хотелось сделать, как можно проще и надежнее, чтобы его мог изготовить любой радиолюбитель. Поэтому недолго думая я разработал простую и очень надежную конструкцию миниатюрного сверлильного станка для печатных плат, чертеж которого представлен на этом рисунке.

Чертеж сверлильного станка для печатных плат

Детали для сверлильного станка легко изготовить на токарном станке или заказать знакомому токарю. Основанием станка служит прямоугольный кусок ДСП размером 160х200 мм. Электродвигатель для сверлильного станка я взял от старого струйного принтера.

Цанговый патрон для крепления сверла купил на Алике. Если будете заказывать патрон обратите внимание на диаметр вала электродвигателя, потому, что валы бывают четырех размеров 2.35 мм, 3.17 мм, 4.05 мм, 5.05 мм, поэтому посадочный диаметр патрона должен точно соответствовать диаметру вала. Благо в Китае сего добра навалом. В комплекте с любым патроном прилагается пять цанговых переходников под разные сверла диаметр которых 0.5 мм, 1 мм, 1.5 мм, 2.5 мм, 3 мм.

Для сверления отверстий в печатных платах лучше всего использовать специальные сверла из твердого сплава сделанные в Японии купленные в Китае на Алике. Диаметр хвостовика 3 мм, диаметр рабочей части сверла 0.9 мм. Как показала практика это самый универсальный размер отверстий подходит для большинства радиодеталей.

Для питания электродвигателя и светодиодной подсветки применяется простейший 12 вольтовый блок питания состоящий из трансформатора, четырех диодов и конденсатора. Спрятано это дело под металлическим кожухом на котором установлен выключатель отключающий сетевое питание трансформатора 220В.

Схема блока питания для сверлильного станка состоит из четырех диодов IN4007 и одного конденсатора 1000mf 25V. Так, что проблем с радиодеталями быть не должно. Трансформатор любой маломощный на 12В 0.5А. Светодиодная подсветка подключается параллельно к контактам электродвигателя. В качестве источника света я использовал небольшую прямоугольную светодиодную панельку.

Схема блока питания для сверлильного станка

Чтобы выглядело аккуратно решил изготовить печатную плату.

Печатная плата блока питания для сверлильного станка

Механизм подачи очень простой. При нажатии на рычаг плата поднимается вверх и таким образом происходит сверление отверстий. Конечно можно было сделать с верхней подачей, как в обычных сверлильных станках… Но зачем усложнять конструкцию? Все и так отлично работает. Станок на 100% справляется со своей задачей. Рекомендую!

Рекомендую посмотреть видеоролик о том, как сделать сверлильный станок для печатных плат своими руками

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Читайте также:  Шлифовальная машина по дереву своими руками

Станки радиально-сверлильной группы

Радиально-сверлильный станок Z3050

Радиально-сверлильные станки используются для обработки единичных отверстий или отверстий, расположенных группами, на заготовках со значительными габаритами и массой.

Операции, выполняемые на радиально-сверлильных станках:

  • Сверление сквозных и глухих отверстий.
  • Рассверливание и растачивание (при использовании расточной головки) отверстий.
  • Нарезание резьбы метчиком.
  • Зенкерование отверстий с получением более высоких классов чистоты и точности обработки поверхности отверстий.
  • Зенкование, необходимое для формирования конических и цилиндрических технологических углублений под головки болтов, винтов и т.д.
  • Развертывание конических и цилиндрических отверстий, необходимое для получения нужной точности и шероховатости поверхностей.
  • Раскатка и хонингование поверхности отверстия (с помощью раскатных и хонинговальных головок).
  • Подрезание торцов бобышек для обеспечения поверхности, перпендикулярной оси отверстия.

Использование специнструмента, оправок и приспособлений повышает производительность сверлильных станков, расширяет диапазон возможных операций, позволяя выполнять характерные, например, для расточных станков: производить вытачивание внутренних канавок, вырезание из листового материала деталей в форме круга.

Согласно классификации металлорежущего оборудования по ГОСТ 8-82, радиальные сверлильные станки относятся к классу К1 (нормальная точность Н), что соответствует требованиям к станкам общего назначения в современной мировой практике металлообработки.

Точность радиально-сверлильного станка во многом зависит от правильной установки и закрепления его станины на подготовленном фундаменте, глубина которого определяется паспортом оборудования, но не может быть менее 0,5 м.

Диапазон возможностей оборудования делает его использование рациональным и на небольших ремонтных производствах, и в цехах крупного машиностроительного предприятия.

Конструкция радиальных сверлильных станков

Каждый станок радиально-сверлильной группы состоит из:

  • жесткого основания,
  • цилиндрических колонн (внутренней и внешней),
  • траверсы (хобота),
  • сверлильной головки (шпиндельной бабки),
  • электрического и гидравлического оборудования управления.

Основные узлы
1 Основание
2 тумба
3 э/д насоса гидравлики
4 колонна
5 резервуар подъема опускания руки и зажима колонны
6 э/д шпинделя
7 э/д подъема/опускания руки
8 винт подъема/опускания руки
9 Шпиндельная бабка
10 рука

Кинематика

Главные движения при сверлильных операциях — вращение и перемещение пиноли шпинделя станка. Кинематические цепочки, выполняющие эти движения, снабжены элементами управления, позволяющими задавать инструменту необходимую скорость вращения и подачу.

  • поворот подвижной колонны радиально-сверлильного станка,
  • вертикальное перемещение консоли (траверсы),
  • фиксация траверсы на колонне на операционной высоте,
  • фиксация шпиндельной головки на траверсе,
  • переключение скоростей шпинделя и подач пиноли.

При обработке деталей на радиальных сверлильных станках координаты центра отверстия и оси инструмента совмещаются передвижением сверлильной головки относительно неподвижной заготовки в полярной системе координат. Эта система характеризуется двумя параметрами: углом поворота траверсы и радиусом положения на ней шпиндельной головки.

Обработка отверстий под углом возможна только при установке под углом самой заготовки с помощью специальной оснастки и приспособлений.

Радиально-сверлильный станок Z30132

Станина с рабочим столом

Станина станка, совмещенная с рабочим основанием (столом), как правило, отлита из серого чугуна. Она предназначена для фиксации всего станка на фундаменте, установки цоколя колонны с траверсой и шпиндельной бабкой, а также крепления оснастки и детали с помощью Т-образных пазов рабочего основания.

Заготовку небольших габаритов можно устанавливать на приставном коробчатом столе, либо непосредственно закреплять на специально обработанной поверхности основания (рабочем столе). Крепление заготовки вне рабочей поверхности стола применяется редко, т.к. вносит дополнительную погрешность в точность обработки изделия.

Поворотная колонна

Колонна установлена вертикально на станине станка и поворачивается вокруг своей оси относительно неподвижной внутренней стойки на роликовых подшипниках. Траверса закреплена на колонне.

В верхней части колонны монтируется механизм подъема/опускания траверсы, приводимый в движение от электродвигателя.

Траверса (консоль)

Консоль (рука или хобот) радиально-сверлильного станка смонтирована непосредственно на колонне; она имеет отдельный электропривод, перемещается вверх-вниз, а также вращается вокруг вертикальной оси вместе с опорной колонной. Вращение, в зависимости от модели станка, может происходить как вручную, так и с помощью электрического привода.

На направляющие консольной траверсы устанавливается сверлильная бабка с рабочим шпинделем. В соответствии с высотой заготовки траверса может быть опущена или поднята. В нише, расположенной с обратной стороны рукава, монтируется электрооборудование, элементы гидравлики.

Шпиндельная головка

Сверлильная головка (шпиндельная бабка), смонтированная на траверсе, конструктивно представляет собой отдельный силовой агрегат, имеющий коробки подач, скоростей, а также механизмы установки глубины сверления.

В радиально-сверлильных станках шпиндель служит для фиксации обрабатывающего инструмента и передачи ему вращающего момента и линейной подачи.

Инструмент вставляется во внутренний конус пиноли (конус Морзе № 4-6 или метрический конус, в зависимости от модели), а затем координатно ориентируется относительно обрабатываемой детали путем поворота консоли и перемещения вдоль нее шпиндельной бабки.

Для удобства оператора все управление станка расположено на сверлильной головке:

  • многофункциональный штурвал перемещения шпиндельной бабки и пиноли шпинделя;
  • кнопки управления зажимом/разжимом узлов, включением/выключением вращения шпинделя, аварийного останова, включения освещения рабочей зоны;
  • рукоятки выбора скорости вращения, подачи шпинделя, направления вращения шпинделя, переключения ручной и автоматической подачи.
Радиально-сверлильный станок z3050

Коробка подач располагается между шпинделем и электродвигателем шпинделя; вращение от электродвигателя передается через зубчатые зацепления и фрикционные соединительные муфты. Фрикционная муфта позволяет выполнить быстрый реверс при нарезании резьбы, отключение подачи при достижении необходимой глубины сверления и предохранить коробку скоростей от перегрузок.

Головка может перемещаться по направляющим консоли в ручном режиме. Она фиксируется перед выполнением операции сверления в нужном положении при помощи специального зажимного механизма, управляемого отдельной кнопкой.

Поскольку шпиндель смонтирован в выдвижной пиноли, это позволяет сверлить отверстия различной глубины, не перемещая траверсу.

Фиксация поворотной колонны, равно как и зажим/разжим шпиндельной головки на направляющих траверсы, происходит при помощи гидравлических механизмов, управляемых кнопками пульта.

Система подачи СОЖ

Бак СОЖ и насосная установка подачи СОЖ к инструменту также находятся в технологических полостях задней части станка. Выключатель расположен в цоколе колонны. Обратно СОЖ сливается самотеком.

Установка и закрепление деталей на столе сверлильного станка.

Обрабатываемую деталь устанавливают на столе станка и закрепляют либо в машинных тисках, либо непосредственно на столе станка при помощи призмы и зажимных прихватов. Опорные поверхности обрабатываемой детали должны плотно прилегать к столу станка. Деталь устанавливают и окончательно закрепляют после совпадения осей центра отверстия и сверла.

При сквозном сверлении отверстий деталь устанавливают на подкладках, чтобы не засверлить поверхность стола или приспособления. Подкладки, применяемые для сквозного сверления, должны быть одинаковыми по высоте и иметь ровные и параллельные стороны. Выбор того или иного способа крепления зависит от конфигурации детали и расположения в ней отверстия.

Перед тем как поместить деталь или тиски на станке, стол вытирают, затем вытирают и слегка смазывают маслом поверхности тисков, соприкасающиеся со столом. Установив тиски на середину стола, разводят губки на ширину зажимаемой детали, протирают губки и дно тисков, а также подкладки, устанавливают подкладки в тиски, а деталь на подкладки и прижимают деталь к неподвижной губке, рис. 9.34.

Рис. 9.34. Установка и закрепление детали в машинных тисках

Чтобы деталь под нажимом сверла не изменяла своего положения, под нее подкладывают прокладку, ширина которой должна быть меньше ширины детали. Подкладку следует подбирать по высоте так, чтобы обрабатываемая деталь выступала из губок тисков на 5—10 мм, рис. 9.35. После этого плотно зажимают деталь и осаживают ее легкими ударами молотка. Пробуя рукой подкладку, проверяют, насколько плотно к ней прижалась деталь. Запрещается закреплять в тисках ударами молотка или другими предметами по зажимной рукоятке.

Рис. 9.35. Установка детали в тисках

Крепление в тисках заготовок различной формы показано на рис. 9.36. При сверлении отверстий диаметром более 10 мм тиски прикрепляют к столу

Рис. 9.36. Крепление в машинных тисках с призматическими губками деталей различной формы: а — прямоугольной; б — пластины; в — цилиндрической в вертикальном положении; г — цилиндрической в горизонтальном положении; д — с угловым профилем

болтами, головки которых закладывают в специальные продольные канавки на столе станка.

Закрепление детали в ручных тисках (рис. 9.37) допускается при сверлении мелких деталей. Барашковую гайку следует завертывать рукой (без применения плоскогубцев и других инструментов или приспособлений).

Рис. 9.37. Закрепление детали в ручных тисках

При сверлении деталей, которые из-за своего размера невозможно зажать в тисках закрепляют на столе сверлильного станка с помощью струбцин, рис. 9.38. Чтобы не повредить поверхность стола при выходе сверла из изделия под изделие подкладывают деревянную подкладку или отрезок древесностружечной плиты (ДСП).

Рис. 9.38. Закрепление изделия на столе сверлильного станка с помощью струбцин

Закрепление деталей на призмах с применением прижимных планок показано на рис. 9.39я. Этот способ применяют при сверлении в деталях цилиндрической формы отверстий диаметром более 10 мм. Закрепление детали на призмах с зажимным приспособлением (рис. 9.39б) используют при сверлении отверстий диаметром до 10 мм. Крепление призмы к столу необязательно.

Рис. 9.39. Закрепление цилиндрической детали в призмах с применением прижимных планок (а) и закрепление в призмах с зажимным приспособлением (б)

Детали сложной конфигурации устанавливают и крепят на угольнике (рис. 9.40), предварительно очистив его от грязи, а затем устанавливают на плоскость стола. С помощью прижимных планок крепят деталь к вертикальной полке угольника так, чтобы ось отверстия находилась под прямым углом к плоскости стола. После этого угольник перемещают по плоскости стола таким образом, чтобы вершина сверла точно совпала с центром намеченным кернером.

Рис. 9.40. Закрепление детали на угольнике

При установке детали непосредственно на столе станка она должна плотна прилегать к столу. Деталь крепится к столу с помощью прихватов, рис. 9.41. Необходимо следить за тем, чтобы между столом и деталью не попала стружка. На рис. 9.42 приведены примеры закрепления прихватами деталей с различной конфигурацией к столу сверлильного станка.

Рис. 9.41. Крепление детали с помощью прихватов

Определение режимов резания. После установки и закрепления детали на столе станка, а инструмента в шпинделе определяют режим резания, т. е. подбирают такое число оборотов и такую подачу сверла, которые могут обеспечить наиболее производительную работу инструмента. При этом исходят из диаметра и материала сверла и вида материала изделия.

Оптимальная скорость резания при сверлении — это такая скорость, которая обеспечивает высокую производительность при достаточно длительной работе сверла (от 10 до 100 минут) без переточки.

Рис. 9.42. Примеры крепление детали к столу с помощью прихватов

Допускаемая скорость резания при сверлении зависит и от качества материала сверла. Так, сверла из быстрорежущей стали допускают более высокие скорости резания, чем сверла из углеродистой стали.

Для сверления отверстий применяют спиральные сверла, которые изготовляют из инструментальных сталей (углеродистой У12А и легированной 9ХС), из быстрорежущих сталей (Р6М5 и др.), а также из твердых сплавов (ВК6М, ВК8М и ВК10М). Для сверл из быстрорежущих сталей скорость резания v = 25—35 м/мин, для сверл из инструментальных сталей v= 12—18 м/мин, для твердосплавных сверл v= 50—70 м/мин. Причем большие значения скорости резания принимаются при увеличении диаметра сверла и уменьшении подачи. При ручной подаче сверла трудно обеспечить ее постоянное (стабильное значение).

Скорость резания зависит и от механических свойств обрабатываемого материала. Чем пластичнее материал, тем труднее отводится стружка, быстрее нагревается сверло и понижаются его режущие свойства. Поэтому хрупкие материалы можно сверлить с более высокой скоростью, чем вязкие.

Не последней в этом списке оказывается и такая характеристика, как диаметр сверла. С увеличением диаметра скорость резания можно повысить, так как массивное сверло обладает большей прочностью и лучше отводит тепло от режущих кромок.

Глубина сверления не менее важна. Чем глубже просверлено отверстие, тем труднее отвод стружки, больше трение и выше нагрев режущих кромок. Поэтому, при прочих равных условиях, сверление неглубоких отверстий можно производить с большей скоростью, а глубоких — с меньшей.

Интенсивность охлаждения сверла также влияет на процесс сверления. Применением охлаждения при сверлении можно повысить скорость резания: для стали на 20 %, а для чугуна до 50 % и получить более чистую поверхность отверстия.

Сверло работает лучше при большей скорости резания и малой подаче. Если во время работы сверло быстро затупляется в углах режущей кромки (в начале цилиндрической части сверла), это говорит о том, что скорость резания выбрана слишком большой, и ее надо уменьшить.

Если же сверло затупляется или выкрашивается по режущим кромкам, это указывает на то, что подача слишком велика. Затупление и поломка сверла чаще всего происходят в конце сверления сквозных отверстий (при выходе из металла). Чтобы предупредить затупление или поломку сверла на проходе, надо в конце сверления уменьшить подачу.

При выборе режимов резания пользуются специальными таблицами (табл. 9.6—9.8). Зная диаметр сверла и марку металла обрабатываемой детали, находят по таблицам скорость резания и подачу для данного сверла, затем по скорости резания и диаметру сверла находят при помощи переводной таблицы число оборотов сверла в минуту. Это число оборотов и подачу сличают с фактическим числом оборотов шпинделя станка и с величиной подачи, обозначенными в таблицах, прикрепленных к станку. Приняв ближайшие подходящие числа оборотов и ближайшую подходящую величину подачи, производят соответствующую настройку станка.

Таблица 9.6. Скорости подачи и резания для сверления углеродистой стали быстрорежущими сверлами (работа с охлаждением)

Диаметр сверла, мм

Скорость резания, м/мин

Окончание табл. 9.6

Диаметр сверла, мм

Скорость резания, м/мин

Таблица 9.7. Число оборотов сверла в минуту (Переводная таблица)

Скорость резания, м/мин

Окончание табл. 9.6

Скорость резания, м/мин

Таблица 9.8. Поправочный коэффициент К, учитывающий вид обрабатываемого материала и его твердость

Углеродистая сталь твердостью НВ

Хромоникелевая или ванадиевая сталь твердостью НВ

Чугун (работа без охлаждения) НВ

Бронза (работа без охлаждения)

Примечание. НВ — твердость по Бринеллю.

В сверлильных станках со ступенчатыми шкивами для получения нужных оборотов накидывают ремень на ту ступень, которая соответствует выбранному числу оборотов. В сверлильных станках с коробкой скоростей число оборотов шпинделя устанавливают рукоятками (рычагами), переводя их в положение, соответствующее выбранному числу оборотов станка. Автоматическую подачу устанавливают таким же путем, т. е. поворотом имеющихся для этого рычагов. При ручной подаче слесарь регулирует нажим на сверло усилием руки, нажимая на рукоятку ручной подачи.

Охлаждение режущих инструментов. Чтобы снять с металла стружку, нужно затратить большие усилия. Эти усилия называются усилиями резания. Значительная доля их расходуется на преодоление трения сходящей стружки о передние грани инструмента и трения между задними гранями сверла и обрабатываемой деталью.

При снятии стружки выделяется большое количество тепла. Между тем нагрев режущей части инструмента вреден, так как приводит к ее ускоренному затуплению. Установлено, что режущие кромки инструмента из углеродистой стали теряют режущие свойства при нагреве до 200 °С, а из быстрорежущей стали — при нагреве до 600 °С. Лишь инструменты, оснащенные твердым сплавом, выдерживают нагрев до 1000 °С. Таким образом, чтобы облегчить условия работы инструмента, нужно значительно уменьшить его нагрев — применить охлаждение.

Для уменьшения трения инструмента о стенки отверстия сверление производят с подводом смазочно-охлаждающей жидкости (СОЖ), особенно при обработке стальных и алюминиевых заготовок. Чугунные, латунные и бронзовые заготовки можно сверлить без охлаждения. Применение СОЖ позволяет повысить скорость резания в 1,4—1,5 раза. В качестве СОЖ используются раствор эмульсии (для конструкционных сталей), компаундированные масла (для легированных сталей), раствор эмульсии и керосин (для чугуна и алюминиевых сплавов).

Охлаждающая жидкость должна подводится непрерывной струей, начиная уже с первого момента работы, т. е. с момента врезания сверла в металл. Каждую минуту к месту работы инструмента должно поступать около 12 л смазочно-охлаждающей жидкости. Если на станке охлаждение не предусмотрено, то в качестве СОЖ используют смесь машинного масла с керосином.

С увеличением глубины сверления ухудшаются условия работы сверла, ухудшается отвод теплоты, повышается трение стружки о стенки канавок инструмента, затрудняется подвод СОЖ к режущим кромкам. Поэтому если глубина сверления больше трех диаметров обрабатываемого отверстия, то скорость резания следует уменьшить.

При сверлении глубокого отверстия, глубина которого в 5 раз больше его диаметра, сверло периодически выводят из обрабатываемого отверстия для охлаждения и удаления накопившейся в канавках стружки.

Закаленные стали сверлят (без охлаждения) сверлами, оснащенными твердым сплавом марки ВК8. Работа ведется прерывисто, т. е. с выводом сверла из отверстия через каждые 2—5 мин.

Выбор диаметра сверла. В практике, в зависимости от назначения, встречаются различные виды сверления отверстий, например сквозные глухие, под развертку, под резьбу и т. п. Во всех этих случаях для одного и того же номинального диаметра отверстия выбирают сверла различных диаметров.

Следует иметь в виду, что в процессе сверления сверло разрабатывает отверстие и делает его несколько большего диаметра. Средние величины разработки отверстия сверлом (разница между диаметром полученного отверстия и диаметром сверла) приведены в табл. 9.9.

Таблица 9.9. Средние величины разработки отверстия сверлом

Ссылка на основную публикацию
Adblock
detector