Электричество от печки своими руками - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Электричество от печки своими руками

Термогенераторная печь – обогрев, горячая вода и электричество из дров


Всем привет, предлагаю к рассмотрению интересную конструкцию дровяной печи, которую вы сможете сделать своими руками. Особенность конструкции в том, что печь способна генерировать электроток для зарядки мобильного телефона и прочих девайсов, за это отвечают элементы Пельтье .

В качестве теплоносителя в печи выступает вода, хотя ее легко можно заменить маслом или другой жидкостью. Это значит, что к такой печи можно подключить батареи и отапливать помещение, как пример. Еще с помощью такой печи можно легко и просто получать горячую воду. Максимальная мощность, которую выдают элементы Пельтье, составляет 10 Ватт, а максимальное напряжение получается в районе 15 В. Если вам нужна более высокая мощность и напряжение, элементов Пельтье можно установить и побольше. Рассмотрим более подробно, как работает такая печь и как ее сделать.

Материалы и инструменты, которые использовал автор:

Список материалов:
– готовый корпус для печи (или листовая сталь, уголок и другие материалы);
– стальные трубы;
– дымовая труба;
– автомобильный радиатор (от Волги или другой, объем желательно побольше);
– элементы Пельтье (у автора 14 штук);
– термопаста;
– листовой алюминий:
– фум-лента;
– квадратные стальные трубы (для теплообменников);
– водопроводный шланг;
– гидравлический клапан (для сброса лишнего давления);
– тройники для водопровода;
– аккумулятор, электроника для контроля напряжения (и подобное по желанию).

Список инструментов:
– болгарка;
– сварочный аппарат;
– токарный станок;
– дрель;
– гаченные ключи.

Процесс изготовления печи:

Шаг первый. Изготовление корпуса печи
Корпус печи изготовлен из металла, автор использовал для таких целей старую емкость. Можно сделать подобную печь из листовой стали, старых газовых баллонов и так далее, вы можете просто модернизировать уже имеющуюся у вас буржуйку.

Устанавливаем дверку, а также дымовую трубу. В дымовой трубе обязательно делаем задвижку, а дверку печи делаем так, чтобы она закрывалась герметично. Это нужно для того, чтобы быстро затушить печь в случае необходимости. Если элементы Пельтье перегреются, они могут выйти из строя.

По размерам печь у автора небольшая, но чтобы получать больше тепла, можно сделать печь и побольше.

























Шаг пятый. Собираем «бутерброд»
Под этим понятием подразумевается установка элементов Пельтье на печь. Всего автор использовал для своих целей 14 элементов Пельтье, для их установки понадобится листовой алюминий и термопаста. Для начала определяем, какая сторона у элемента горячая, а какая холодная, проверяем это, путем подключения элемента к аккумулятору. Ну а далее устанавливаем элементы на листовой алюминий, используя термопасту. У вас должно получиться два блока по 7 штук. Устанавливаем эти блоки между теплообменниками, горячий у нас находится в центре, а два холодных по бокам. Теплообменники стягиваются стальными хомутами, чтобы надежно прижать элементы к теплообменникам.

Элементы Пельтье подключаем последовательно или параллельно, в зависимости от тока и напряжение, которое вы хотите получить.


















Все почти готово, осталось подключить аккумулятор, вольтметр и можно разжигать печь. Вода нагревается довольно быстро и сильно. Благодаря тому, что в нагревательном контуре давление выше атмосферного, вода нагревается до 105°C и более. Температура радиатора при этом составляет +18°C, а на улице +8°C. Благодаря такому перепаду температур, элементы Пельтье хорошо генерируют электрический ток, автор без труда одновременно заряжает мобильный телефон и аккумулятор.

Если систему оснастить хорошими аккумуляторами и умной электроникой, от протопки печи можно запасать довольно неплохие резервы электроэнергии. Удачи и творческих вдохновений, если надумаете повторить нечто подобное! Не забывайте делиться своими самоделками с нами!

Как получить электричество из тепла — использование элемента Пельтье для выработки энергии, сборка термогенератора

Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.

Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.

Шаг 1: Необходимые детали

  1. 1х Элемент Пельтье (термоэлектрический преобразователь)
  2. Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
  3. Толстый электрический кабель двух цветов (опционально)
  4. Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
  5. Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
  6. Термопаста (опционально), алюминиевая фольга (желательно)
  7. Резак для резки тонких металлов
  8. Ножницы по металлу
  9. Разные отвертки (для закручивания винтов корпуса и входов/выходов)
  10. Разные винты и болты (для крепления металлических пластин и радиатора)
  11. Паяльник и припой (опционально) для надежного крепления
  12. Аккумуляторная батарея низкой или средней мощности (для подзарядки)
  13. Термоусадочные трубки для защиты проводов от тепла (необходимо)
  14. 1х блокирующий диод, чтобы предотвратить обратную зарядку.
  15. 2 алюминиевые банки (металлическая пластина)
  16. Толстая медная проволока
  17. Цифровой мультиметр

Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.

Шаг 2: Конструирование

Построить корпус и тепловой генератор электричества довольно просто.

Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.

Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.

Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.

Шаг 3: Тестирование теплогенератора

Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.

Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.

На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.

Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.

Шаг 4: Улучшения

Возможные следующие модернизации устройства:

  1. Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
  2. Подключите Joule Thief или несколько для небольшого увеличения напряжения.
  3. Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
  4. Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
  5. Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
  6. Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
  7. Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
  8. Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Обзор электрогенераторов на дровах

Электрогенераторы в последнее время становятся все более востребованным товаром. Они нужны для автономного электроснабжения в различных ситуациях. Электрогенератор на дровах даст возможность получить электрический ток практически в любом месте. Устройство состоит из топки и элемента, преобразующего тепловую энергию в электрическую. Этот элемент нагревается с одной стороны и охлаждается с другой. В результате происходит выработка электричества. Фактически, это печь с элементом-преобразователем энергии.

Кому нужен дровяной электрогенератор

Электрогенератор, работающий на дровах, больше всего подходит для обеспечения резервного источника питания на даче или в небольшом доме, а также как основной автономный источник электричества в походе или во время отдыха на природе.

Кроме выработки электричества печь-генератор выполняет основную функцию — нагревает помещение, кроме того, на ней можно приготовить еду и вскипятить воду.

Электрогенератор на вырабатывает постоянный электрический ток 12 вольт. Если подключить инвертор, то можно преобразовать постоянный ток в переменный 220 вольт.

Плюсы и минусы устройства

Как у любого устройства, у электрогенератора на дровах есть свои преимущества и недостатки. Сравнив их, можно понять, насколько вам необходима такая печь и какую именно выбрать.

Преимущества

  • Возможность обогрева помещения до 50 м 3 и приготовления пищи,
  • Компактность,
  • Длительный срок службы,
  • Возможность использовать не только дрова, но и древесные отходы,
  • Невысокая стоимость энергии,
  • Возможность изготовить своими руками.

Недостатки

  • Высокая цена готовой печи-генератора,
  • Низкая мощность (примерно 50-60 Вт) и напряжение в сети (12 вольт).

В основном дровяной электрогенератор позволяет подключить освещение в небольшом доме и обеспечить зарядку телефонов и других гаджетов.

Читайте также:  Бетоносмеситель принудительного типа своими руками

Можно подключить радиоприемник или портативный телевизор. При необходимости можно с помощью инвертора получить и более высокое напряжение в сети, то есть привычные нам 220 вольт. Сегодня выпускаются разные модели дровяных генераторов: от компактных устройств весом до 1 килограмма, которые удобно брать с собой на природу, до автономных дровяных электростанций, вырабатывающих до 100 кВт, которые могут обеспечить электричеством небольшое производство.

Обзор моделей

Купить дровяной электрогенератор можно в специализированных компаниях. Связаться с ними и получить исчерпывающую информацию удобно на сайтах этих компаний:

  • интернет-магазин AvtoStudio
  • сайт madrobots.ru,
  • компания Термофор.

Предлагаем вашему вниманию несколько моделей таких печей-генераторов, предназначенных для бытовых нужд.

Портативные модели

Они представлены щепочницами и грилями, оснащенными электропреобразующим элементом. Такая печка хороша в походе для разогрева еды, на ней можно согреть кружку чая, пожарить небольшой кусочек мяса и заодно зарядить гаджеты. На большее они не рассчитаны.

К примеру, печь BioLite CampStove способна работать на любом древесном топливе: веточки, щепки, шишки. Она выдает до 5 Вт мощности, оборудована USB. Чтобы вскипятить литр воды, достаточно совсем немного древесины, а займет это буквально 5 минут. Цена BioLite CampStove 9 600 рублей.

Индигирка

Печь Индигирка — это наиболее известная модель дровяных электрогенераторов. Эта печь отапливает помещение до 50 м 3 , весит 37 килограммов, выполнена она из жаростойкой стали и служит не один десяток лет. Объем топки – 30 литров. Выходное напряжение Индигирки — 12 вольт, максимальная выходная мощность — 50 Вт. Конечно, основное предназначение печи — обогрев, удобная чугунная конфорка позволяет приготовить пищу или согреть чай. В качестве электрогенератора печь в состоянии работать уже через 15 минут после розжига.

Термоэлектрический генератор(ТЭГ) на модулях Пельтье

Приветствую всех читателей. В предыдущей теме:Автономная солнечная система в Подмосковье я упомянул про свой ТЭГ, который помогает при отсутствии солнца. В комментариях люди просили на этом остановиться подробнее. Вот, вспомнил, что да как. И отвечаю. Сперва идут мои материалы с Форумхауса многолетней давности. Не все, а для понимания.

Итак, год назад, перед ноябрьским отключением электричества, я сваял примитивный термоэлектрический агрегат из одного модуля Пельтье из Вольтмастера, самый дешёвый на 127 ватт холода. Особенности таких модулей – эффективность в генерации 2-3%, максимальная температура нагрева – 150 градусов Цельсия. Из разнообразных обрезков(см. фото)

алюминия склеил/скрутил вокруг модуля два радиатора – один(нижний) на печку для уменьшения температуры, поступающей к модулю, второй – сверху для быстрейшего охлаждения холодной стороны модуля. Оговорюсь, что в охлаждении не силён совсем, посему лепил алюминь, как попало.
Весь агрегат ставился на печку( печь-шведка), точнее на её чугунную плиту, перед растопкой(температура чугунины максимум-до 250 градусов). Эффективная температура на плите держится около 3 часов, средняя выработка энергии в эти часы – 2-2.5 ватт/час. За одну топку получается около 6 ватт энергии кошкины слёзы. Печь топилась каждый день, поэтому в месяц выходило что то около 200 ватт. К выводам агрегата крокодилами подключался простой стабилизатор( из набора e-kits) и потом заряжались пальчиковые батарейки.
В таком виде, в силу маломощности, перспектив я не увидел

Были приобретены модули Пельтье американские от Thermal Enterprises ( вот такие: Model CP1-12730
62mm x 62mm x 3.8mm
Maxiumu power consumption 545 Watts
Operates from 0-16 volts DC and 0-32 amps
Operates from -60 deg C to +180 deg C
Each device is fully inspected and tested
Fitted with 6-inch insulated leads
Perimeter sealed for moisture protection)
Блок из 4 шт этих Гигантиков, соединённых последовательно. Общая тепловая мощность 2180Вт. Радиатор снизу и сверху алюминий+ вентилятор большой.
Подключены были первый год к большому контроллеру (на фото), во второй год – к малому (на фото 30А), все подключения шли через ваттметры (на фото), люблю я их, удобно. Вот мощность с них и снимал – правый нижний угол – мощность на данный момент, левый нижний общая выработка.
0ватт – когда печь холодная, потом постепенное увеличение до прим 30ватт (максимум, что наблюдал, без записи это 37ватт), потом остывание и опять 0 ватт.

Все что выше – это цитаты с Форумхауса 2011-2014 годов.
Теперь о том, что есть сейчас. И о опыте.
Маленький и маломощный ТЭГ на одном элементе Пельтье сгорел на второй год. Не предназначены они все таки для печки. А вот большой блок из мерканцев вполне живой

Хотя года два я его и не доставал. Расчехлил его только в декабре 19-го. Солнца было мало и в качестве малой поддержки покатил.
Итак конструкция: четыре элемента, последовательно соединённых, между двумя ал.радиаторами. Нижний радиатор для того, чтобы немного снизить температуру чугунины, а верхний, чтобы рассеять побыстрей максимум. Сверху ручка. Снял-поставил обратно. Провода на автомат

А с него, через DC-DC преобразователь, на аккумуляторы.
В первые года крепилась еще стойка с вентилятором для обдува радиатора, но потом выкинул ее. Не нужна. Проще передвинуть по чугунине печки куда нибудь на край. Там где похолодней.
Этой зимой топлюсь осиной и липой в основном, а от них жара мало. И чугунина особо и не разогревается. Почти нужные 180 градусов и есть.
Теперь по выработке. Жить на такой выработке невозможно. Только в качестве хобби или для малой подзарядки аккумуляторов.
Реальный КПД на производство энергии с них, при дельте в 60градусов – 2,4%. То есть от 2 с лишним штатных киловатт остается 52 ватт в час.
У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.
Последние года я забросил эту игрушку, потому как и ветряк и солнечные батареи даже зимой дают на порядок больше, но в этом году как-то звезды неудачно сошлись. И контроллер ветряка полетел. Пришлось две недели новый ждать. И солнца до нового года почти не было. Поэтому и вытащил с антресоли этот агрегат.
Но на 21 января он опять закинут на антресоль.

PS стоили 8 лет назад такие штатовские элементы на ебэе 25$. Сейчас таких не видел, только гонконгские.

PPS есть у меня почти со школьных лет приятель Витя. Человек очень сложной судьбы. Сейчас он вроде как бомж. И живет в основном рядом или под или над тепломагистралями. Вот ему я подарил пять лет назад такую установку. Бочины трубы больше 100 градусов, и 24 часа в сутки. Теперь Он с нотебуком не расстается. И лампочка светит постоянно.

Дубликаты не найдены

приятель витя пикабушник по-любому..))

ахаха модер скорее)

Все это полная хуйня, уж извини афтар. В свое время рассчитывал, но учитывая КПД пельтьешек на генерацию даже на стадии расчета получается полная хуйня.

У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.

Ну во первых не ватт – а ватт/ч. 5 квт/ч стоят для сельской местности рубля 3 за штуку – и того за ГОД – 12*5*3 = 225р – на такую сумму можно нагенерить за целый год, это же почти 4$. Круто, учитывая что один элемент стоит 25$ – можно за 6 лет отбить, если не сгорит.

Во вторых – он скорее всего сгорит, так как надо во первых его не перегреть, а во вторых стремится максимально нагреть – как контролить нагрев, нууу я ваще хз. А насколько помню – паяны они низкотемпеатурным припоем. Нагревать нужно по максимуму – нужна дельта как можно больше с холодной стороной, которую нужно снабжать гигааантским радиатором если в него реально запулить 2квт ))) С радиаторм и некоторой системой контроля нагрева вся эта шарабайка не отобъется и за 50 лет.

ПыСы: у мну была идея для походного генератора от костра, при чем была мысля делать что-то типа котла с кипящей водой, что не давало бы элементам перегреться.

Вот что за привычка, с первых слов матюгаться, как малолетка. Зачем оно здесь?

Во-первых если быть точным, то никаких ватт/ч или квт/ч тем более не существует. Вы ошиблись. Если писать точно, то только ватт*ч и квт*ч. На профильном ресурсе так бы и написал, но Пикабу ресурс в основном развлекательный и упрощённый. Поэтому, чтобы не заморачивать читателям голову и написал, как было.

Во-вторых, если вы читали заметку, то должны были заметить, что вопрос окупаемости и подключения к центральным сетям не стоит, так как центрального электричества нет совсем. Дом стоит в полной автономии от МОЭСК.

В-третьих, не сгорел за восемь лет. Это уже не теория.

В-четвёртых, дельта по максимуму, как раз вредна. Делал я к нему водяное охлаждение, и обдув, и много чего ещё, восемь лет назад, но всё смысла нет. Идеальная дельта, как я написал в заметке 60 градусов. Будет больше – выработка резко снижается.

В-пятых, это и не делалось, как выше было сказано, с оглядкой на окупаемость.

Похоже у автора холодная сторона не совсем холодная. А если холодную сторону до уличной остудить, пельте не полетит? Ну типа +50 – (-20) = 70градусов к примеру

Не полетит – у него паспортный КПД не выше 20% (могу пиздеть, пишу по памяти).

Но паспортный это в идеальных условиях, что вряд ли получится сделать без сложных заморочек. Теперь на пальцах – афтар пишет про модель 540вт – вычитаем 20% КПД которое пойдет на эл-во, остается 430вт которые нужно рассеять с холодной стороны, причем рассеять быстро. Если использовать пассивный конвекционый радиатор (чтобы энергию на вентилятор не тратить), то (опять же если не путаю) рекомендуется МИНИМУМ 10-15см2 площади ребер на 1вт для охлада. 430*10=4300см2=0.43м2 те минимальный радиатор нужен с площадью поверхности под полметра квадратного минимум, а лучше метр. Если кулер будет пассивный – то это нехилая такая вещь, раз в пять больше самого большого компутерного.

Читайте также:  Гаражный подъемник для автомобиля своими руками

ПыСы: как холодную сторону охлаждать на улице если печь в доме – я хз, не двух метровую же тепловую трубу делать.

в далеком будущем когда сделают ткань с таким эффектом то одевшись в одежду из неё можно будет собирать с тела человека энергию, охлаждать в жару и обогревать в холод

вот есть аэрогель материал с очень малой теплопроводимостью, вот бы его внутрь Пелтешки чтоб он не давал одной стороне так сильно нагреваться от другой

а сейчас это баловство не больше

ГыГы. Как он не даст ей сильно нагреваться, он вообще потом тепла перекроет и все.

Читать невозможно! Автор, купи букварь!

Нет, это не Криотермовские модули. Для каждого модуля паспорт с датой и место производства. Мои то ли Калифорния, то ли Коннектикут ( CA or CO). Во всяком случае в 2011 было так.

что мешает купить еще пару модулей или всю печь ими облепить? если она постоянно топится.

Ага, и трястись как бы не сунуть лишнее полено.

Во, блин! Это с печи можно ещё и электричество вырабаттывать? Круто!

А я думал элементы Петлье только в системах охлаждения используются.

У меня же печка до красна раскаляется когда угля засыпаю. Надо тоже собрать такую штуковину!

Может и есть такие, что “до красна” держат, но я про них не слышал. Максимум градусов 200. Потом разваливаются.

Там низко температурный припой, плюс полупроводник – 180С афтар выше пишет, все сходится.

Что за говняный монтаж на последней фотке?

какой есть, извините.

Автономная солнечная система в Подмосковье

Здравствуйте. Буквально вчера поднимал эту тему: Солнышко на новый год и на удивление появилось много вопросов и просьб разъяснить особенности: #comment_157927435. Многое ответил в комментариях. Здесь просто объединяю и дополняю.
Солнечная система состоит из двух независимых блоков. Первый из 15 панелей по 100ватт. Второй из ветряка на 400 ватт и панелей на 280 ватт. Отдельно в доме, в качестве аварийной палочки-выручалочки на темные дни, расположена сборка ТЭГ термогенератор на элементах Пельтье. Весь декабрь очень выручает. Про ветряк я на пикабу уже писал год назад: Про ветряк в развитие сюжета.
Управляются блоки также порознь двумя MPPT контроллерами. Один тайваньский MPP Solar на 60А, другой американский OutBack 80A: https://shop.solarhome.ru/outback-flexmax-80-kontroller-zary. . Инверторов на 220 тоже два. От немецкой Солартроникс на 1 и 2 квт. Проводок параллельных тоже две: на 12/24 и на 220 вольт. Вот такой я извращенец.
Система собиралась с 2010 года по 2015-й. Последние 4.5 года ничего не менялось.
Аккумуляторы Leoch 12/100 8 штук свинец. Работают кстати уже с 2013 года, не нарадуюсь. Аккумуляторы Deka 12/100 4 штуки тоже свинец. Похуже.
Лампы освещения везде светодиодные на 12 вольт, чаще самопайки-самоделки, реже покупные.
Телевизор и ноутбуки с зарядками подключены в низковольтовую сеть через прикуриватели.
На инверторной сети 220 вольт живет только холодильник А+ и насосы колодезные и в доме.
За 10 лет автономной жизни поменял много разных элементов системы. Могу многое сказать про аккумуляторы Delta- г.вно, заливка Пентэласт- г.вно, китайские аналоги немецких контроллеров- г.вно. Литиевые батареи неразумно. Много было выкинуто денег псу под хвост, но это в прошлом.
Цена всех компонентов в современных условиях примерно 250-300 тысяч плюс работа.
В условиях Подмосковья такая конфигурация даёт избыток энергии с февраля по октябрь включительно. Для любых нужд. Проблемы возникают с ноября по январь. Самые проблемы с 20 ноября по 20 января. Это усредненно за десять лет.
Летом же ветряк чаще стоит отключенным, также изредка включаю панели. Электричества больше, чем я могу съесть.
Мои потребности в электричестве зимой ужимаются до 60 квтч в месяц. Летом трачу 250-300 квтч. Если вести активно стройку, то до 1000 квтч в месяц. Система это позволяет. Свет, ноутбук, насосы, вентиляция, телевизор, зарядки, холодильник работают штатно всегда.

PS Если вы привыкли к электропечке/духовке, электрочайнику, микроволновке, утюгу, мощному холодильнику. Т.е. к любому мощному потребителю более 1.5 квт, то эта система не потянет ваши потребности. Только летом. Если же вы сможете без этого обходиться, то система может работать круглый год.

PPS Сделал такую систему не потому, что выпендрежник или денег некуда девать, а потому, что СНТ отключает свет на полгода, а МОЭСК не вмешивается. Судиться не прельщает. Тянуть собственную линию за 1.5 км и ставить свой трансформатор намного дороже. Слушать тарахтящий генератор на природе не хочется. Поэтому и получилось, что получилось.

PPPS Вроде приняли закон о микрогенерации и отдаче в сеть. Весной поинтересуюсь, посчитаю и может быть займусь этим.

Термогенератор, получаем электричество из тепла.

Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяется термогенератор. Так же, как и у термопары, его принцип действия основан на эффекте Зеебека, открытом в 1821 году. Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется ЭДС, если места спаев проводников находятся при разных температурах. Например, один спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.

Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс.

Приблизительно величину термоэдс можно определить по простой формуле:

E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус. Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного.

Приведенную формулу достаточно наглядно иллюстрирует рис. 1.

Рис. 1. Принцип работы термопары

Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

После платины идут металлы с отрицательным значением термоэдс:

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.

Рис. 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые термоэлементы

Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую. Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.

Читайте также:  3д принтер металлические изделия

Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.

Бытовой термогенератор

Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рис. 3.

Рис. 3. Термогенератор ТГК-3

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.

Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Видео