Производство стали в кислородных конвертерах - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Производство стали в кислородных конвертерах

Кислородный конвертер

Для производства стали применяют три хорошо отработанных технологических процесса: мартеновский, кислородно-конвертерный, электроплавильный. Согласно статистике наибольшее количество стали в мире выплавляют, используя кислородный конвертер. На него приходится более 70% всей выплавляемой стали.

Основы этого метода были разработаны в начале тридцатых годов двадцатого века. Применять его приступили на австрийских заводах, расположенных в двух городах Линце и Донавице только в пятидесятые годы двадцатого века. В зарубежной технической литературе по металлургии этот способ получения стали именуется буквами ЛД. Это название возникло из первых букв австрийских городов. У наших металлургов он именуется как кислородно-конвертерный.

Разновидности кислородно-конвертерного способа

В кислородных конвертерах технология выплавки происходит по одному из двух хорошо известных способов. Они носят имя своих создателей: томасовский и бессемеровский. Однако современные технологии шагнули далеко вперёд. Так содержание азота в томасовской и бессемеровской стали выше в три раза, чем в конвертерной или мартеновской.

Разница между ними заключается в реализации технологических решений и применяемого огнеупорного материала. В томасовском процессе достаточно сложно производить контроль над протеканием периодов плавки. Бессемеровский процесс позволяет производить продувку воздухом через дно самого конвертера.

По способу организации продувки кислородно-конвертерный процесс бывает: с верхней, нижней или донной, комбинированной продувкой.

Первый способ обеспечивает наилучшие условия следующих технологических процессов: подачи в конвертер кислорода для продувки, более эффективный вывод лишних газовых скоплений, удобную заливку жидкого чугуна, дополнительную загрузку металлического лома и других дополнительных материалов.

Конвертеры с нижней продувкой всегда сделаны с меньшим объемом, по сравнению с конвертерами, обладающими верхней продувкой. Для реализации продувки через дно в нижней части конвертера монтируют от семи до двадцати специальных устройств, называемых фурмами. Их количество зависит от объёма конвертера. Монтируют эти устройства в той части дна, которая поднимается над уровнем расплавленного металла в момент наклона конвертера. После освобождения от содержимого осуществляется этап продувки. Существенно повышается скорость движения молекул углерода к поверхности. Это снижает общее содержание химического элемента в расплаве. Таким образом, появляется возможность получать сталь, в которой процент содержания оставшегося углерода очень маленький.

Кроме углерода, удаётся получить лучшее удаление серы. Осуществляя продувку со стороны дна, удаётся повысить на 2% количество получаемого металла.

Последний способ позволяет объединить некоторые достоинства обоих методов и в то же время устранить некоторые имеющиеся недостатки. Продувка мощным потоком кислорода производиться сверху вниз. Снизу вверх производят продувку инертным газом, например аргоном. Иногда для снижения общей стоимости вместо инертных газов применяют азот. Применение комбинированной продувки позволяет добиться следующих положительных показателей:

  • увеличить объём выплавляемого металла;
  • процент добавляемого металлического лома может быть повышен;
  • добиться существенного снижения требуемых ферросплавов;
  • уменьшить требуемое количество кислорода для продувки;
  • снизить содержания различных газовых примесей, что позволяет повысить качество стали.

Технология кислородно-конвертерного способа

Устройство кислородного конвертера достаточно простое. По внешней форме конвертер выглядит как большой сосуд. Сверху он заканчивается сужающейся горловиной. Такая форма верхней части позволяет обеспечивать благоприятные условия для организации верхней продувочной системы. Вся загрузка компонентов в конвертер осуществляется сверху. Принцип работы кислородного конвертера заключается в следующем: в него заливают расплавленный чугун (он служит топливом для кислородного конвертера), засыпают металлический лом, загружают дополнительные материалы. В центральной части металлического корпуса конвертера располагается механизм поворота. С его помощью происходит наклон конвертера для слива готовой стали. В конвертерах, у которых объём превышает 200 тонн, применяют мощный двухсторонний привод. Для этого используют четыре мощных электрических двигателя, по два с каждой стороны.

При выборе размера верхней горловины учитывают, что целесообразно производить загрузку исходного материала, например стального лома не по частям, а сразу весь объём. Это позволяет сократить общее время, которое требуется на весь технологический процесс. Однако при увеличении размера горловины конвектора начинают увеличиваться общие тепловые потери. Происходит повышение содержания азота. Это происходит за счёт того, что через широкую горловину происходит самопроизвольное подсасывание дополнительного кислорода из окружающего воздуха. Вместе с кислородом попадает и азот. Этот дополнительный азот растворяется в металле и приводит к снижению качества.

Во многих странах наиболее распространёнными являются конвертеры с объёмом от 20 тонн до 450 тонн. Продолжительность конвертерного процесса выплавки стали не превышает 50 минут.

Сохранение надёжности протекания химических реакций при конвертерном процессе выплавки стали происходит благодаря поддержанию температуры более 1400°C. Для обеспечения этих условий металлический корпус конвертера внутри выкладывается огнеупорным материалом (обычно это специальный шамотный или тугоплавкий кирпич). На первом этапе производят загрузку кислородного конвертера. После этого, приступают к подаче кислорода. Требуемое количество подаваемого воздуха для обеспечения одной плавки составляет 350 кубических метров.

Кислород с большой скоростью вступает в химическую реакцию с расплавленным чугуном. Это позволяет удалить избыточный углерод. Присутствующие в металле серу и фосфор одновременно превращают в шлак. Такая технологическая цепочка позволяет остановить плавку в тот момент, когда уровень содержания углерода достигнет заданных технических условий. Это позволяет получать довольно большую номенклатуру углеродистых сталей и добиваться низкого содержания серы, фосфора и других примесей.

Контроль происходящих процессов и качество металла, осуществляют методом периодического отбора проб. Они позволяют определить степень оставшегося в расплаве газообразного углерода. Когда процент содержания углерода достигнет заданного, процесс продувки кислородом останавливают. По завершению технологической цепочки, сталь выливают в специальный ковш. Оставшийся шлак удаляют через специальный слив в конвертере.

Особое внимание уделяется контролю количества и скорости подачи кислорода. Процент содержания кислорода регулируют введением в конвертер охладителей. Функции охладителей могут выполнять: металлолом, железная руда, известняк.

Схема кислородного конвертера

Всё равно в готовой стали всегда сохраняется определённый процент кислорода. Он вступает в реакцию окисления с железом. Таким образом образуется окись железа. Чтобы снизить содержание этой окиси (провести операцию восстановления железа), в ковш добавляют так называемые раскислители. Если процесс так называемого раскисления произошел технологически правильно, в результате остывания отсутствует процесс выделения газов. Такую сталь металлурги называют спокойной. Для получения такой стали, в качестве раскислителей, в расплав добавляют сначала добавки на основе ферромарганца. На конечном этапе добавляют ферросилиций. В конце плавки — обыкновенный алюминий.

Вся технологическая цепочка производства стали подразделяется на следующие этапы:

  • окисление присутствующих добавок;
  • последовательные химические реакции (сначала окисление кремния; затем марганца, на завершающем этапе углерода);
  • дефосфорация;
  • десульфурация;
  • шлаковое образование;
  • процесс общего раскисления.

Если весь кислород не был удалён, продолжается образование окиси железа. Кроме этого, при остывании продолжается химическая реакция взаимодействия углерода и железа. Она приводит к выделению окись углерода. Его интенсивное образование и последующее выделение из расплава хорошо видно визуально. Процесс напоминает закипания воды в чайнике. Подобная сталь на языке профессионалов называется «кипящей». Для устранения этого эффекта в расплав добавляют ферромарганец.

Присутствие в жидком металле растворенных газов, которые не успевают выйти, приводит к образованию пустот. Они серьёзно снижают качество всего полученного металла. Чтобы не допустить таких образований, на этапе плавки, производят специальную дегазацию. Чтобы добиться наилучшего эффекта, эту операцию проводят в специальных вакуумных камерах. Таким образом удаётся существенно повысить плотность и улучшить физико-механические свойства полученной партии металла.

Достоинства и недостатки кислородно-конвертерного способа

К основным достоинствам способа относятся:

  • по сравнению с другими процессами выплавки у него более высокая производительность;
  • конструктивная схема самого кислородного конвертера достаточно проста (обыкновенный металлический резервуар, то есть корпус, внутри которого находится огнеупорный материал);
  • низкая стоимость расходов на огнеупоры;
  • невысокая себестоимость получаемой стали;
  • низкие капитальные затраты на строительство, даже с учётом добавления стоимости на строительство кислородных станций.

Опыт эксплуатации конвертеров показал, что экономическая эффективность превышает мартеновский способ на 14%, а электроплавильный на 25%.

К наиболее явно выраженным недостаткам относятся:

  • необходимость загрузки в конвертер только жидкого чугуна. Добавление и последующая переработка металлического вторсырья возможна только в небольшом количестве (не более 10%);
  • на этапе технологической продувки вместе с углеродом выгорает достаточно большое количество полезного железа. Технологические потери могут достигать 15%;
  • возникают сложности в организации системы контроля и регулирования конвертерного процесса выплавки стали. Это связано с высокой скорость протекания химических процессов;
  • недостаточный контроль не позволяет получать сталь точно заданных технических характеристик.
Читайте также:  Укладка клинкерной плитки своими руками

Область применения конвертерных видов стали

Имеющиеся недостатки несколько ограничивают область применения подобной стали. Из неё производят такие деталей, к которым не предъявляют повышенные технические требования. В кислородных конвертерах получают продукцию трёх видов: углеродистую, легированную и низколегированную сталь. Эти марки используются для изготовления проволоки (катанки), труб небольшого диаметра, отдельных видов рельс.

Специальные изделия активно применяются в строительстве. Практически вся так называемая автоматная сталь изготавливается по конвертерной технологии. Из неё производят большое количество метизной продукции: болты, гайки, шурупы, саморезы, скобы и так далее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Производство стали в кислородных конвертерах

Сущность процесса

Производство стали

Основными материалами для производства стали являются передельный чугун и стальной лом. Механические свойства стали гораздо выше, чем у чугуна, что объясняется пониженным содержанием углерода, а также примесей в стали по сравнению с чугуном (табл. 3.1).

Состав передельного чугуна и низкоуглеродистой стали.

МатериалСостав, %
УглеродКремнийМарганецФосфорСера
Передельный чугун4,0–4,40,75– 1,25До 1,750,15–0,30,03– 0,07
Сталь низкоуглеродистая0,14–0,220,12–0,30,4–0,650,0050,055

Сущностью любого передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы.

Кислородный конвертер (рис. 3.2) представляет собой агрегат грушевидной формы высотой до 15 м, кожух которого изготовлен из листовой стали толщиной до 110 мм. Внутри конвертер футерован огнеупорным кирпичом. В процессе работы конвертер 2 может поворачиваться на цапфах 1 с помощью поворотного устройства 3 вокруг горизонтальной оси для завалки скрапа, заливки чугуна, разгрузки стали и шлака.

Шихтовыми материалами для кислородно-конвертерного процесса являются жидкий передельный чугун, скрап и флюсы. В состав флюсов входит известняк, железная руда, боксит Al2O3 и плавиковый шпат СаF3, который применяют для разжижения шлака.

В кислородном конвертере всегда ведут основной процесс выплавки стали, повышенную щелочность создают с помощью известняка для удаления фосфора и серы.

Перед плавкой в наклоненный конвертер через горловину загружают скрап и заливают чугун с температурой 1250–1350 °С. Шихта должна занимать 1/5 объема конвертера. После этого конвертер поворачивают в вертикальное положение и внутрь его вводят водоохлаждаемую фурму 5, через которую подают кислород под высоким давлением. Фурма не доходит до уровня металла на 1,2–2 м. Одновременно с началом продувки в конвертер загружают флюсы.

Рис. 3.2. Схема устройства кислородного конвертера и стадии выплавки стали:

I – завалка лома; II – заливка чугуна; III – загрузка флюса; IV – продувка;

V – выпуск стали; VI – слив чугуна; 1 − цапфы; 2 − конвертер; 3 − поворотное устройство; 4 − отверстие для выпуска стали; 5 − фурма

Для снижения содержания в чугуне углерода и примесей осуществляют их окисление. Процессы окисления сопровождаются выделением большого количества тепла, что необходимо для расплавления шихты и нагрева ванны жидкого металла. В этом состоит первый этап плавки.

В первую очередь под действием кислорода начинается интенсивное окисление железа в соответствии с законом действующих масс, так как в чугуне в большом количестве содержится железо и оно взаимодействует с кислородом: Fe + 1/2 О2 = FeО + 263 кДж

Образовавшийся оксид железа, при высоких температурах процесса, более активно, чем чистый кислород, взаимодействует с примесями чугуна.

На 4–6-й минутах плавки окисляется кремний, восстанавливается железо и выделяется большое количество тепла. С окисления кремния начинается процесс шлакообразования. На 8–10-й минутах плавки начинает окисляться марганец и в виде оксида также удаляется в шлак. Фосфор начинает взаимодействовать с оксидом железа в начальный момент продувки (с 5-й минуты):

2P + 5FeO ↔ 5Fe + P2O5 + 225 кДж

Повышенное содержание оксида железа способствует образованию Р2О5. Это соединение неустойчивое, и реакция может идти в обе стороны, но присутствующий в печи оксид кальция уже при невысоких температурах связывает Р2О5, переводя его в шлак:

Хуже всего при кислородно-конвертерном процессе удаляется сера, присутствующая в чугуне в виде сульфида железа FeS, который начинает взаимодействовать с оксидом кальция даже при низких температурах:

FeS + СаО = FeО + СаS

Но в кислородном конвертере из-за повышенного содержания FeО сера практически не связывается кальцием, так как этот процесс сопровождается образованием FeО, который уже в избытке.

Второй этап выплавки стали – «кипение» металлической ванны начинается при достижении температуры 1450 °С. Это позволяет интенсивно протекать реакции окисления углерода, сопровождающейся поглощением теплоты:

FeО + С = СО + Fe – 154 кДж

Пузырьки окиси углерода выделяются из жидкого металла, вызывая бурное кипение ванны. Оно способствует выравниванию температуры по объему конвертера и частичному удалению в шлак неметаллических включений, прилипающих к пузырькам углерода. При достижении заданного содержания углерода подачу кислорода отключают, фурму поднимают, конвертер наклоняют и сталь через летку выливают в ковш.

Третий этап выплавки стали – раскисление в кислородном конвертере не проводится, оно осуществляется в ковше осаждающим методом.

Раскисление заключается в восстановлении оксида железа FeО, растворенного в жидком металле. Кислород, выполнивший свою функцию при удалении примесей из металла, сам является вредной примесью, и его содержание необходимо снизить.

В ковш добавляют ферромарганец, ферросилиций и алюминий. Они обладают бóльшим сродством к кислороду, чем сталь. Железо восстанавливается, а образующиеся оксиды MnO, SiO2, Al2O3, обладающие меньшей плотностью, уходят в шлак:

FeО + Mn = Fe + MnO + Q

2FeО + Si = 2Fe + SiO2 + Q

3FeО + 2Al = 3Fe + Al2O3 + Q

В кислородных конвертерах выплавляют конструкционные стали с различным содержанием углерода – кипящие и спокойные. Этим способом трудно получать стали, содержащие высокое количество легкоокисляющихся легирующих элементов, поэтому кислородно-конвертерным способом можно выплавить только низколегированную сталь. Легирующие элементы вводятся в ковш в расплавленном состоянии или в виде твердых ферросплавов.

Кислородно-конвертерный процесс отличается высокой производительностью: выплавка стали в конвертерах вместимостью 50–300 т идет 25–50 мин.

Не нашли то, что искали? Воспользуйтесь поиском:

Производство стали в кислородных конвертерах.

Сущность кислородно-конверторного процесса заключается в том, что налитый в плавильный агрегат (конвертор) расплавленный чугун продувают струей кислорода сверху. Углерод, кремний и другие примеси окисляются и тем самым чугун переделывается в сталь.

Кислородно-конвертерный процесс. Это выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом сверху через водоохлаждаемую фурму.

Кислородный конвертер. Устройство кислородного конвертора показано на рис.2. Его грушевидный корпус (кожух) сварен из листовой стали толщиной до 110 мм; внутри он футерован основными огнеупорными материалами общей толщиной до 1000 мм, емкостью 130 – 350 т жидкого чугуна.

Рис. 2. Схема устройства кислородного конвертера

1 – водоохлаждаемая фурма, 2 – горловина, 3 – грушевидный корпус (кожух), 4 – огнеупорные материалы, 5 – цапфа

В процессе работы конвертер можно поворачивать на цапфах вокруг горизонтальной оси на 360° для завалки скрапа, заливки чугуна, слива стали, шлака и т.д. Во время продувки чугуна кислородом конвертер находится в вертикальном положении. Кислород в конвертер (9 – 44 ат) подают с помощью водоохлаждаемой фурмы, которую вводят в конвертер через его горловину. Фурму устанавливают строго вертикально по оси конвертера. Ее поднимают специальным механизмом, сблокированным с механизмом вращения конвертера так, что конвертер нельзя повернуть, пока из него не удалена фурма.

Шихтовые материалы. Такими материалами для кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом, известь, железная руда , боксит, плавиковый шпат. Чугун для переработки в кислородных конвертерах должен содержать 3,7 – 4,4 % С; 0,7 – 1,1 % Mn; 0,4 – 0,8 % Si; 0,03 – 0,08 % S;

Читайте также:  Магнитится ли свинец?

Технология плавки. После выпуска очередной плавки конвертер наклоняют и через горловину с помощью завалочных машин загружают скрапом. Затем в конвертер заливают чугун при температуре 1250 – 1400 °С из чугуновозных ковшей. После этого конвертер в вертикальное положение, внутрь его вводят кислородную фурму и подают кислород. Одновременно с началом продувки в конвертер загружают шлакооборазующиеся материалы (известь, боксит, железную руду).

Расстояние головки фурмы от уровня металла в конвертере 0,7 – 0,3 м, в зависимости от емкости конвертера. Струи кислорода, поступающие под большим давлением в конвертер, проникают в металл, вызывают его циркуляцию в конвертере и перемешивание со шлаком. Благодаря интенсивному окислению примесей чугуна при взаимодействии с кислородом в зоне под фурмой температура достигает 2400 °С.

Окислительный период. В кислородном конвертере составляющие чугуна окисляются газообразным кислородом закиси железа (FeO), растворяющимся в металле и шлаке при продувке. В зоне контакта кислородной струи с чугуном в первую очередь окисляется железо, так как его концентрация во много раз выше концентрации примесей

Закись железа растворяется в шлаке и металле, обогащая металл кислородом

Окисление примесей чугуна кислородом, растворенным в металле, происходит по реакциям

Часть примесей окисляется на границе металл – шлак окислами железа, содержащимися в шлаке:

В кислородном конвертере благодаря присутствию шлаков с большим содержанием CaO и Fe, интенсивному перемешиванию металла и шлака легко удаляется из металла фосфор:

Образовавшийся фосфат кальция удаляется в шлак. В чугунах перерабатываемых в конвертерах, должно быть не более 0,15 % Р. При повышенном (до 0,3 %) содержании фосфора необходимо для более полного его удаления производить промежуточный слив шлака и наводить новый, что снижает производительность конвертера.

Рис. 3. Последовательность технологических операций при выплавке стали в кислородных конвертерах: а – загрузка скрапа; б- заливка жидкого чугуна; в- продувка кислородом; г- выпуск стали в ковш; д- слив шлака в шлаковую чашу

Раскиление стали. Прим выпуске стали из конвертера в ковш ее раскисляют вначале ферромарганцем, затем ферросилицием и алюминием. Затем из конвертера сливают шлак.

В кислородных конвертерах трудно выплавлять легированные стали, содержащие легкоокисляющие легирующие элементы. Поэтому в кислородных конвертерах выплавляют низколегированные стали, содержащие до 2 – 3 % легирующих элементов. Легирующие элементы вводят в ковш, предварительно расплавив их в электропечи, или легирующие ферросплавы вводят в ковш перед выпуском в него стали. Окисление примесей чугуна в кислородном конвертере протекает очень быстро: плавка в конвертерах емкостью 130 – 300 т заканчивается через 20 – 25 мин. Поэтому кислородно – конвертерный процесс производительнее плавки стали в мартеновских печах: производительность конвертера емкостью 300 т достигает 400 – 500 т/ч стали, а мартеновских печей и электропечей – не более 80 т/ч. Вследствие этого производство стали в нашей стране в основном увеличивается за счет ввода в строй новых кислородно – конвертерных цехов.

Производство стали в кислородных конвертерах.

Эта технология реализуется на металлургических предприятиях с доменным производством, так как основная масса шихты — жидкий чугун. Она принципиально отличается от мартеновского метода и плавки в электропечах отсутствием внешнего нагрева — источником тепловой энергии для выплавки стали являются химические экзотермические (с выделением теплоты) реакции окисления элементов, входящих в состав чугуна. Этот способ производства стали продувкой воздуха через расплавленный чугун был запатентован в 1856 г. Г. Бессемером.

В настоящее время применяют более производительную технологию — кислородно-конвертерную плавку — продувку жидкого чугуна осуществляют не воздухом, а техническим кислородом.

Емкость существующих конвертеров составляет 10. 400 т. Кислородный конвертер (рис. 4.2), может поворачиваться, наклоняться, что необходимо для заливки исходного чугуна, взятия проб, выпуска стали и т. д. Через верхнее

Рис. 4.2. Схема кислородного конвертера: а — заливка чугуна; б — продувка кислородом;

1 — конвертер; 2 — фурма для подачи кислорода; 3 — летка для выпуска стали

отверстие осуществляется загрузка шихтой, выпуск шлака. Кислород под давлением 1___1,5 МПа подают сверху через водоохлаждаемую фурму 2. Сливают

полученную сталь через летку 3.

В конвертер сначала загружают скрап, затем заливают чугун (

70 % по массе) и засыпают шлакообразующие компоненты — известь и бокситы. В состав шихты может входить также железная руда и окалина.

Кислород, подаваемый в конвертер, окисляет преимущественно железо, поскольку это основной элемент, входящий в состав шихты (

90 %). Эта реакция экзотермическая, идущая с выделением теплоты (Fe + 1/2 02 —> FeO). С начала продувки в конвертере образуется две несмешиваемые жидкости — металл (плотность

7,8 г/см 3 ) и шлак (плотность

2,5 г/см 3 ). Примеси и избыток углерода удаляются в результате реакций, происходящих между оксидами железа или кальция (входящего в известь), с одной стороны, и примесями — с другой.

Кремний, марганец и фосфор удаляются в результате следующих реакций обмена с оксидом железа:

При этом оксиды кремния и марганца переходят в шлак, а оксид фосфора растворяется в металле. Его удаление так же, как и удаление серы с их переходом в шлак, достигается в результате реакций обмена с оксидом кальция: Р25 + 4СаО —?> (Са0425 и FeS + СаО —?> FeO + CaS. Углерод выгорает по реакции: FeO + С —?> Fe + СО.

Содержание углерода в стали регулируется временем продувки — чем оно меньше, тем больше углерода остается в стали. Время продувки мало влияет на содержание примесей, так как они активно окисляются в начале продувки, тогда как заметное снижение углерода происходит позже (рис. 4.3).

Завершающей операцией выплавки стали является раскисление (удаление кислорода). Кислород, растворенный в железе, снижает механические свойства сталей (прочность, пластичность и вязкость).

Стали в зависимости от степени раскисления подразделяют на кипящую, спокойную и полуспокойную:

кипящая сталь, называемая так из-за выделяющихся пузырей СО в результате непрекращающейся реакции С + О —> СО, получается при раскислении только ферромарганцем;

Рис. 4.3. Влияние продолжительности продувки кислородом на содержание примесей и углерода в стали

  • полуспокойная сталь образуется при раскислении ферромарганцем и небольшим количеством ферросилиция (или алюминия);
  • спокойная сталь образуется при последовательном раскислении ферромарганцем, ферросилицием и алюминием.

Кипящая, наименее раскисленная сталь, обладает пониженными свойствами из-за наличия газовых пузырей, остающихся в слитке. Это самая дешевая сталь. Лучшим качеством и соответственно более высокой ценой обладает хорошо раскисленная спокойная сталь (без газовых пузырей).

Преимущества кислородно-конвертерной технологии перед мартеновским и электросталеплавильным процессами — более высокая производительность, простота оборудования; меньшая стоимость самого процесса (не требуется внешний нагрев, не расходуется топливо).

К недостаткам следует отнести необходимость сооружения сложных и дорогостоящих пылеочистительных установок, что вызвано большим пылеобра- зованием, связанным с активным окислением и испарением железа, а также большой угар легирующих элементов — хрома, марганца и других элементов. Поэтому в конвертере выплавляют в основном углеродистые и низколегированные стали.

Производство стали в конвертерах

Обогащение дутья кислородом увеличивает производительность конвертеров и улучшает качество стали. Ускоренное окисление примесей сокращает длительность продувки и улучшает тепловой баланс конвертера: потери тепла зависят от продолжительности передела и количества газов, которое при обогащенном дутье уменьшается. В результате этого выявляются резервы тепла, позволяющие вводить охлаждающие добавки — скрап или железную руду и этим резко увеличить производительность по стали.

Растворимость азота пропорциональна корню квадратному из парциального давления его в газах:

Полная замена воздушного дутья техническим кислородом могла бы полностью исключить азот из газов и резко снизить содержание его в стали. Однако при продувке чугуна через днище конвертера техническим кислородом или дутьем высокого обогащения окислительные процессы развиваются с такой высокой интенсивностью и с таким большим выделением тепла, что из за местного перегрева у входа дутья фурмы и днище быстро прогорают и требуют частой замены. В связи с этим обогащение дутья кислородом возможно не более чем до 35%. Продувая чугун воздухом, обогащенным до 30% О2, удается получить сталь с концентрацией азота 0,008—0,005%, близкую по качеству к мартеновской. Полное исключение азота из дутья возможно путем применения кислорода в смесях с водяным паром или двуокисью углерода. Диссоциация Н2О и СО2 способствует поглощению избытка тепла и предупреждает местный перегрев, сохраняя фурмы и днище от преждевременного износа. Азот в стали таким путем снижается до содержания

Читайте также:  Укладка тротуарной плитки своими руками пошаговая инструкция

0,002%. Хорошо удаляются фосфор и сера. Продувка чугуна газовыми смесями распространена на ряде европейских заводов.

Кислородно-конвертерный процесс

Идея окисления чугуна кислородом сверху возникла при обдуве металла в ковше в 1934 г. А. И. Мозговым. В промышленном масштабе она была осуществлена на заводах Австрии в Линце и Донавице в 1952—1953 гг. С тех пор доля стали, выплавленной в кислородных конвертерах, непрерывно возрастает. Способ заключается в обработке жидкого чугуна в глуходонных конвертерах кислородом, подаваемым при высоком давлении (800—1200 кН/м 2 ) вертикальной фурмой, введенной через горловину (рис.).

Рис. Схема кислородно-конвертер ной продувки при обычном (а) и вы соком (б) положении фурмы

Применение технического кислорода делает процесс независимым от состава чугуна; даже при малом содержании одного или нескольких элементов, дающих наибольший приход тепла (Si, Мn, Р), можно конвертировать чугун в сталь. Основная футеровка и основные шлаки позволяют успешно перерабатывать чугун с повышенным содержанием фосфора и серы. Кислородно конвертерным способом перерабатывают чугун любого состава, однако наиболее выгодно следующее содержание примесей: 3,7-4,4% С; 0,3-1,7% Si; 0,4-2,5% Мn; 0,3% Р; 0,03—0,08% Возможность конвертерного передела мартеновского чугуна по зволяет упростить доменное производство данного завода выплавкой одного вида чугуна для двух передельных цехов. Чугун с содержанием 0,2—0,3% фосфора продувают с промежутокным сливом и наводкой нового шлака, в Советском Союзе при обычном содержании фосфора до 0,15% этого не требуется. Количество добавляемого скрапа определяется содержанием кремния и марганца в чугуне и его температурой; оно достигает 25—30% от массы чугуна. Железная руда, применяемая как охладитель, должна содержать менее 8% SiО2. Расход извести составляет до 9% от массы металлической шихты.

Конструкция кислородного конвертера

Кислородный конвертер показан на рис. 2. Емкость современных конвертеров составляет от 70 до 300 т, в настоящее время в строятся конвертеры на 300 т, а в ближайшем будущем будут строиться конвертеры на 350 т стали и более. Корпус конвертера — сварной, изготовлен из стальных листов толщиной 50—100 мм. Конвертеры новой конструкции имеют так называемую «тигельную» форму, т. е. делаются без разъемов. Цапфами, закрепленными на корпусе секторами или кольцом, конвертер опирается на станины. Для поворачивания 100•т конвертера ставят два электродвигателя. Мощность каждого электродвигателя равна 95 кВт. Футеровка кислородного конвертера— двухслойная: слой, примыкающий к кожуху, изготовлен из магнезитового кирпича и служит несколько лет, внутренний слой, рабочий, заменяемый при каждом ремонте, выполнен из смолодоломитового или смолодоломитомагнезитового кирпича и выдерживает до 600 плавок.

Кислородное дутье подают вертикальной водоохлаждаемой фурмой, которую можно перемещать по высоте. Она состоит из трех коаксиально сваренных труб. По внутренней трубе подается кислород, по наружным — подводится и отводится охлаждающая вода. Формирование кислородной струи производится медной головкой с одним или несколькими соплами. Сопло Лаваля позволяет подавать кислород со скоростью более 500 м/с

Изменяя расстояние от фурмы до поверхности ванны, управляют глубиной внедрения струи и образования зоны контакта ее со шлаком и металлом. Окислительные процессы в шлаке и на границе шлак — металл регулируют изменением расхода кислорода. В реакционной зоне возникают высокие температуры, достигающие 2200—2400° С. Они вызывают испарение железа и его окисление в газах с выделением из конвертера бурого дыма. По этой причине из газов кислородных конвертеров необходимо улавливать пыль, состоящую из окислов железа, Кислородно-конвертерный цех (рис. 225) состоит из четырех пролетов — загрузочного, конвертерного и двух разливочных. Разливочные пролеты современных цехов имеют машины литья заготовок (МНЛЗ).

Рис. 2. Кислородный конвертор емкостью 100—130 т

Кислородно-конвертерный процесс по химизму не отличается от бессемеровского и томасовского. Здесь также сначала окисляется железо, образующаяся закись железа растворяется в металле, переходит в шлак, образуя железистый шлак и окисляет примеси чугуна. Высокое давление дутья [(9,8—11,7) •10 5 кН/м 2 ] и его сильное окислительное воздействие в малой по объему реакционной зоне с высокими температурами создают условия для одновременного или практически одновременного окисления примесей, чугуна (Si, Мn, С). Периоды окисления отдельных элементов, типичные для донной продувки чугуна воздухом, здесь выражены слабо (рис. 4). Окисление кремния заканчивается за первые 3—5 мин. Марганец окисляется одновременно, однако с меньшей полнотой, а затем частично вновь восстанавливается из шлака.

Рис. 3. Поперечный разрез здания кислородно-конвертерного цеха с конвертерами емкостью 100—130 т:

1— конвертер; 2 — камин для приема конвертерных газов; 3 —мостовой заливочный кран грузоподъемностью 180/50 т; 4 — мостовой разливочный кран грузоподъемностью 180/50 т; 5 — консольный кран грузоподъемностью 5 т; 6 — консольный поворотный кран; 7 — тележка для изложниц грузоподъемностью 160 т; 8 — тележка для шлакового ковша емкостью 16 м 3 ; 9 — самоходный сталевоз с ковшом емкостью 130 т; 10 — кран грузоподъемностью 3 т; 11 — бункера для запаса сыпучих; 12— весы-дозаторы; 13— чугуновоз с ковшом емкостью 140 т

Важная особенность кислородно-конвертерного процесса — возможность окисления фосфора вскоре после подачи кислоро-

да и дальнейшее усиление дефосфорации. Это объясняется быстрым образованием необходимого известково-железистого шлака. Окисление углерода также начинается сразу после начала подачи дутья. Средняя скорость выгорания углерода составляет 0,4—0,5% С/мин. Интенсивное выделение газовых пузырей поднимает уровень расплавов и создает режим заглубленной струи.

Десульфурация происходит в менее благоприятных условиях, чем дефосфорация, но успешнее, чем при донном воздушном дутье, достигая 40%, причем до 1 /10 серы переходит в газы в виде SO 2.

Возможность быстрого образования основного шлака в начале продувки позволяет успешно перерабатывать фосфористые чугуны, получая годные для удобрения шлаки, богатые Р2О5. Один из способов состоит в применении кусковой извести. В конвертере оставляют конечный шлак предыдущей плавки, добавляют к нему до 7б общего расхода извести, продувают, вводя постепенно еще 20—25% СаО и железную руду. В слитом после этого шлаке оказывается не менее 20% Р2О5. Продолжая продувку, добавляют скрап, остальное количество извести и железную руду. По другому способу (OLP) известь в виде порошка вдувают через кислородную фурму. Железную руду загружают перед продувкой и после слива промежуточного шлака. Во втором периоде добавляют скрап (охладитель), остальную известь и необходимое количество железной руды.

Рис. 4. Изменение состава и температуры металла (а) и состава шлака (б) по ходу кислородно-конвертерного процесса в конвертере емкостью 100 т

Применение технического кислорода резко улучшает качество конвертерной стали, прежде всего по азоту, концентрация которого снижается до 0,007—0,002%. Механические свойства кислородно-конвертерной стали приближаются к свойствам мартеновской стали и даже превышают их.

В настоящее время освоена выплавка кислородным конвертированием малоуглеродистой (кипящей и спокойной), рельсовой, низколегированной, динамной, трансформаторной, судостроительной, электротехнической и других сталей.

Тепловой баланс передела позволяет перерабатывать большие количества скрапа и использовать железную руду, что повышает технико-экономическую эффективность кислородно-конвертерного производства. С увеличением емкости конвертеров до 300—350 т эффективность производства увеличивается. Расход на передел кислородно-конвертерным процессом — низкий, основная доля в себестоимости стали — стоимость материалов; строительство и ввод в действие конвертеров и конвертерных цехов осуществляется в более короткие сроки и значительно дешевле мартеновских. Эти особенности определили на ближайшее время кислородно-конвертерное производство— основным направлением развития сталеварения.

Статья на тему Производство стали в конвертерах

Ссылка на основную публикацию
×
×
Adblock
detector