Кислородно конвертерный способ производства стали - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Кислородно конвертерный способ производства стали

Кислородно-конвертерный способ производства стали

Выплавка стали производится в конвертере (рисунок 3.2), пред­ставляющем собой стальной сосуд грушевидной формы / вмести­мостью 100. 350 т. Внутри конвертер выложен огнеупорным кир­пичом 2 (смолодоломитовый кирпич). В верхней его части находит­ся горловина 3, сбоку — летка 4. Снаружи (в средней части) конвертер опоясан стальным кольцом с двумя цапфами. Цапфы удерживают конвертер и позволяют поворачивать его вокруг гори­зонтальной оси. Поворот конвертера осуществляется электродвига­телями через систему редукторов. Перед началом процесса конвер­тер поворачивают в наклонное положение, загружают металличе­ский лом и заливают жидкий чугун, имеющий температуру 1250. 1400°С. Затем конвертер ставят в вертикальное положение, загру­жают известняк, опускают водоохлаждаемую форму и подают кислород под давлением 1,0. 1,4 МПа. При воздействии кислорода на жидкий металл прежде всего окисляется железо (2Fе+О2 =2FеО), а образующийся оксид железа взаимодействует с примеcями (углеродом, кремнием, марганцем): С+FеО = СО+Fе; 2FеО +Si= SiO2+2Fе;

Мn+FеО = МnО + Fе. Одновременно идет процесс окисления примесей чистым кислородом.

Известь взаимодействует с фосфором, серой и переводит их в шлак:

2Р+5FеО-т-4СаО= (СаО)4Р2О5 + 5Fе. Сера удаляется в шлак с момента продувки и в течение всей плавки: FеS+СаО = СаS + FеО. Но степень десульфурации расплава не превышает 40 % вследствие высокого содержания FеО в шлаке.

Рисунок 3.2 – Схема кислородного конвертера

Контроль плавки ведется по спектру пламени, выходящего из гор­ловины конвертера.

По ходу плавки берут пробы металла на экспресс-анализ. Если содержание углерода соответствует заданному, про­дувку прекращают, поднимают фурму и, повернув конвертер в горизонтальное положение, выпускают сталь через летку в ковш, а затем через горловину слива­ют шлак.

В готовой стали остается кислород в виде оксида железа. Для его восста­новления в ковш вводят раскислители. Если сталь полностью раскислена и при застывании в изложницах из нее почти не выделяются газы, ее называют «спо­койной». При выплавке спокойной стали в качестве раскислителей сначала вво­дят ферромарганец, потом ферросилиций и в последнюю очередь алюминий.

В тех случаях, когда из стали не удален кислород, при ее раз­ливке в изложницы и постепенном охлаждении последний взаимо­действует с углеродом.

Образующийся оксид углерода интенсивно выделяется из кристаллизирующегося слитка. Поверхность метал­ла как бы бурлит, поэтому такую сталь называют «кипящей».

При получении кипящей стали в качестве раскислителя вводят только ферромарганец. Закончив раскисление, приступают к раз­ливке стали по изложницам. Температура стали при разливке -1600. 1650°С.

В кислородных конвертерах в основном выплавляют углеродис­тые, низколегированные и легированные стали. Из таких сталей изготовляют катанку, проволоку, сортовой прокат, лист, трубы, рельсы и широкий сортамент других изделий. Основные технико-экономические показатели работы конвертера: продолжительность плавки в конвертере вместимостью 350 т составляет

50 мин, годо­вая производительность конвертера вместимостью 250 т — более 1,5 млн т, выход годного металла — 90. 92 %, удельный расход кислорода — 50. 55 м3 на 1 т стали. Основным показателем явля­ется себестоимость выработки 1 т стали.

Производство стали в мартеновских печах

Мартеновская печь (рисунок 3.3) сложена из огнеупорного кирпича и стянута рядом стальных балок, образующих наружный каркас.

Внутри печи находится рабочее пространство 3, сверху оно ограни чено сводом, снизу — подом. Под выложен в виде овальной чаши в которой происходит процесс плавки. В передней стенке печи имеются загрузочные окна 4, через которые загружают шихтовы материалы и следят за ходом плавки. В задней стенке устраивают отверстия для выпуска стали и шлака.

В торцах печи расположены головки 2, соединяющие плавиль ное пространство с регенераторами /. Последние представляют камеры, выложенные огнеупорным кирпичом, и служат для подо грева воздуха и газообразного топлива. Печи, работающие на низкокалорийном топливе, имеют с каждой стороны по два регенератора, а печи, работающие на жидком топливе и высококалорийном газе— по одному регенератору с каждой стороны.

По конструкции мартеновские печи делятся на стационарные (неподвижные) и качающиеся. В качающихся печах рабочее пространство заключено в металлический кожух, рама которого опирается на катки, позволяющие наклонять печь с помощью гидравлического или механического привода. В таких печах облегчается загрузка шихты, удаление шлака и разливка готовой стали, но из за сложности конструкции они применяются редко.

На многих заводах работают двухванные печи. Это наиболее производительные подовые сталеплавильные агрегаты. Вместимость современных мартеновских печей — 600. 900 т.

В зависимости от состава шихты различают скрап-процесс и скрап-рудный процессы плавки. При скрап-процессе в печь загружаются скрап (55. 75 %) и чушковый чугун (25. 45%). При скрап-рудном процессе в печь заливают жидкий чугун (55. 75 %), добавляют руду (12. 20%) и скрап. Наиболее распространен скрап-рудный процесс плавки.

Рисунок 3.3 – Схема технологического процесса мартеновской печи

Процессы плавки в мартеновских печах делят на кислые и ос­новные. Характерные особенности кислого процесса: печь футерует­ся кислым огнеупорным кирпичом (динасовый кирпич, кварцевый песок), используется шихта с малым содержанием серы и фосфора, удаление которых в кислых печах затруднено. При основном про­цессе плавки футеровка печи выполняется из магнезитового или доломитового кирпича, для удаления серы и фосфора в шихту вво­дят известняк.

Основной скрап-рудный процесс включает заправку пода и отко­сов, завалку и прогрев твердой шихты, заливку жидкого чугуна, плавление, кипение, раскисление, доводку и выпуск готовой стали.

Заправка пода и откосов заключается в засыпке доломитовым или магнезитовым порошком выбоин и ямок, разъеденных шлаком. Для лучшей приварки порошка к поду эту операцию проводят при повышенных температурах.

Завалка шихты производится завалочными машинами. Сначала загружают часть лома, а на него — известняк и железную руду. После прогрева загружают остальной лом и нагревают до темпера­туры плавления чугуна.

Заливка жидкого чугуна производится из ковша по специально установленному желобу.

В период загрузки и плавления шихты происходит окисление примесей за счет кислорода, содержащегося в печных газах и руде, а после образования шлака — содержащегося в оксиде железа, растворенном в шлаке. Окисление примесей (С, Si, Мn, Р) идет по тем же реакциям, что и при конвертерном процессе. Известняк пере­водит в шлак серу и фосфор.

Важным моментом плавки является период «кипения» — выде­ления образующегося оксида углерода в виде пузырьков. Металл при этом перемешивается, выравниваются его температура и хими­ческий состав, удаляются газы, всплывают неметаллические вклю­чения. По достижении требуемого содержания углерода в кипящем металле, что определяется путем быстрого анализа отбираемых проб, приступают к последней стадии плавки — доводке и раскисле­нию металла. В печь вводят рассчитанную дозу ферромарганца и ферросилиция, в результате чего уменьшается содержание оксида железа в металле (металл раскисляется).

После раскисления берут контрольную пробу металла и шлака, пробивают летку и по желобу выпускают сталь в ковши. Продол­жительность плавки стали в мартеновской печи составляет 8. 16 ч. Печь работает непрерывно. Длительность функционирования печи в основном зависит от стойкости ее свода. Стойкость динасового свода — 200. 350 плавок, магнезито-хромитового — 300. 1000 плавок.

Основными показателями, характеризующими работу мартенов­ских печей, являются: съем стали с 1 м 2 площади пода в сутки (в среднем составляет 8. 12, при интенсификации процесса-20. 30 т/м2), расход металлошихты на 1 т годных слитков (1050. 1200 кг), выход годного (91. 95 %), расход условного топлива на 1 т стали (10. 20% от массы выплавляемой стали), выплавка стали на одного рабочего (в крупных мартеновских цехах при скрап-рудном процессе — 2000. 3000 т в год), себестоимость 1 т мартеновской стали (колеблется от 80 до 116 руб.).

Приведенные технико-экономические показатели мартеновского производства зависят и от принятой организации работы.

Наметилась устойчивая тенденция к увеличению удельного веса выплавки стали кислородно-конвертерным способом, как более технически совершенным и экономически эффективным. Удельный вес выплавки стали в стране в мартеновских печах снизился, она составляет 30. 35 % от общего ее производства.

В то же время часть крупных мартеновских цехов в XII пяти­летке реконструируется: на месте мартеновских печей устанавли­ваются дуговые сталеплавильные агрегаты или обычные мартенов­ские печи заменяются на двухваныые с использованием кислорода как интенсификатора плавки. Применение методов внепечной обра­ботки стали в сочетании с системами автоматизации контроля и управления технологическим процессом плавки позволит повы­сить качество металла и использовать мартеновские печи для про­изводства высококачественных и высоколегированных сталей.

Дата добавления: 2014-01-15 ; Просмотров: 702 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Кислородный конвертер

Для производства стали применяют три хорошо отработанных технологических процесса: мартеновский, кислородно-конвертерный, электроплавильный. Согласно статистике наибольшее количество стали в мире выплавляют, используя кислородный конвертер. На него приходится более 70% всей выплавляемой стали.

Основы этого метода были разработаны в начале тридцатых годов двадцатого века. Применять его приступили на австрийских заводах, расположенных в двух городах Линце и Донавице только в пятидесятые годы двадцатого века. В зарубежной технической литературе по металлургии этот способ получения стали именуется буквами ЛД. Это название возникло из первых букв австрийских городов. У наших металлургов он именуется как кислородно-конвертерный.

Разновидности кислородно-конвертерного способа

В кислородных конвертерах технология выплавки происходит по одному из двух хорошо известных способов. Они носят имя своих создателей: томасовский и бессемеровский. Однако современные технологии шагнули далеко вперёд. Так содержание азота в томасовской и бессемеровской стали выше в три раза, чем в конвертерной или мартеновской.

Разница между ними заключается в реализации технологических решений и применяемого огнеупорного материала. В томасовском процессе достаточно сложно производить контроль над протеканием периодов плавки. Бессемеровский процесс позволяет производить продувку воздухом через дно самого конвертера.

По способу организации продувки кислородно-конвертерный процесс бывает: с верхней, нижней или донной, комбинированной продувкой.

Первый способ обеспечивает наилучшие условия следующих технологических процессов: подачи в конвертер кислорода для продувки, более эффективный вывод лишних газовых скоплений, удобную заливку жидкого чугуна, дополнительную загрузку металлического лома и других дополнительных материалов.

Конвертеры с нижней продувкой всегда сделаны с меньшим объемом, по сравнению с конвертерами, обладающими верхней продувкой. Для реализации продувки через дно в нижней части конвертера монтируют от семи до двадцати специальных устройств, называемых фурмами. Их количество зависит от объёма конвертера. Монтируют эти устройства в той части дна, которая поднимается над уровнем расплавленного металла в момент наклона конвертера. После освобождения от содержимого осуществляется этап продувки. Существенно повышается скорость движения молекул углерода к поверхности. Это снижает общее содержание химического элемента в расплаве. Таким образом, появляется возможность получать сталь, в которой процент содержания оставшегося углерода очень маленький.

Кроме углерода, удаётся получить лучшее удаление серы. Осуществляя продувку со стороны дна, удаётся повысить на 2% количество получаемого металла.

Последний способ позволяет объединить некоторые достоинства обоих методов и в то же время устранить некоторые имеющиеся недостатки. Продувка мощным потоком кислорода производиться сверху вниз. Снизу вверх производят продувку инертным газом, например аргоном. Иногда для снижения общей стоимости вместо инертных газов применяют азот. Применение комбинированной продувки позволяет добиться следующих положительных показателей:

  • увеличить объём выплавляемого металла;
  • процент добавляемого металлического лома может быть повышен;
  • добиться существенного снижения требуемых ферросплавов;
  • уменьшить требуемое количество кислорода для продувки;
  • снизить содержания различных газовых примесей, что позволяет повысить качество стали.
Читайте также:  Зачем нужен трансформатор напряжения?

Технология кислородно-конвертерного способа

Устройство кислородного конвертера достаточно простое. По внешней форме конвертер выглядит как большой сосуд. Сверху он заканчивается сужающейся горловиной. Такая форма верхней части позволяет обеспечивать благоприятные условия для организации верхней продувочной системы. Вся загрузка компонентов в конвертер осуществляется сверху. Принцип работы кислородного конвертера заключается в следующем: в него заливают расплавленный чугун (он служит топливом для кислородного конвертера), засыпают металлический лом, загружают дополнительные материалы. В центральной части металлического корпуса конвертера располагается механизм поворота. С его помощью происходит наклон конвертера для слива готовой стали. В конвертерах, у которых объём превышает 200 тонн, применяют мощный двухсторонний привод. Для этого используют четыре мощных электрических двигателя, по два с каждой стороны.

При выборе размера верхней горловины учитывают, что целесообразно производить загрузку исходного материала, например стального лома не по частям, а сразу весь объём. Это позволяет сократить общее время, которое требуется на весь технологический процесс. Однако при увеличении размера горловины конвектора начинают увеличиваться общие тепловые потери. Происходит повышение содержания азота. Это происходит за счёт того, что через широкую горловину происходит самопроизвольное подсасывание дополнительного кислорода из окружающего воздуха. Вместе с кислородом попадает и азот. Этот дополнительный азот растворяется в металле и приводит к снижению качества.

Во многих странах наиболее распространёнными являются конвертеры с объёмом от 20 тонн до 450 тонн. Продолжительность конвертерного процесса выплавки стали не превышает 50 минут.

Сохранение надёжности протекания химических реакций при конвертерном процессе выплавки стали происходит благодаря поддержанию температуры более 1400°C. Для обеспечения этих условий металлический корпус конвертера внутри выкладывается огнеупорным материалом (обычно это специальный шамотный или тугоплавкий кирпич). На первом этапе производят загрузку кислородного конвертера. После этого, приступают к подаче кислорода. Требуемое количество подаваемого воздуха для обеспечения одной плавки составляет 350 кубических метров.

Кислород с большой скоростью вступает в химическую реакцию с расплавленным чугуном. Это позволяет удалить избыточный углерод. Присутствующие в металле серу и фосфор одновременно превращают в шлак. Такая технологическая цепочка позволяет остановить плавку в тот момент, когда уровень содержания углерода достигнет заданных технических условий. Это позволяет получать довольно большую номенклатуру углеродистых сталей и добиваться низкого содержания серы, фосфора и других примесей.

Контроль происходящих процессов и качество металла, осуществляют методом периодического отбора проб. Они позволяют определить степень оставшегося в расплаве газообразного углерода. Когда процент содержания углерода достигнет заданного, процесс продувки кислородом останавливают. По завершению технологической цепочки, сталь выливают в специальный ковш. Оставшийся шлак удаляют через специальный слив в конвертере.

Особое внимание уделяется контролю количества и скорости подачи кислорода. Процент содержания кислорода регулируют введением в конвертер охладителей. Функции охладителей могут выполнять: металлолом, железная руда, известняк.

Схема кислородного конвертера

Всё равно в готовой стали всегда сохраняется определённый процент кислорода. Он вступает в реакцию окисления с железом. Таким образом образуется окись железа. Чтобы снизить содержание этой окиси (провести операцию восстановления железа), в ковш добавляют так называемые раскислители. Если процесс так называемого раскисления произошел технологически правильно, в результате остывания отсутствует процесс выделения газов. Такую сталь металлурги называют спокойной. Для получения такой стали, в качестве раскислителей, в расплав добавляют сначала добавки на основе ферромарганца. На конечном этапе добавляют ферросилиций. В конце плавки — обыкновенный алюминий.

Вся технологическая цепочка производства стали подразделяется на следующие этапы:

  • окисление присутствующих добавок;
  • последовательные химические реакции (сначала окисление кремния; затем марганца, на завершающем этапе углерода);
  • дефосфорация;
  • десульфурация;
  • шлаковое образование;
  • процесс общего раскисления.

Если весь кислород не был удалён, продолжается образование окиси железа. Кроме этого, при остывании продолжается химическая реакция взаимодействия углерода и железа. Она приводит к выделению окись углерода. Его интенсивное образование и последующее выделение из расплава хорошо видно визуально. Процесс напоминает закипания воды в чайнике. Подобная сталь на языке профессионалов называется «кипящей». Для устранения этого эффекта в расплав добавляют ферромарганец.

Присутствие в жидком металле растворенных газов, которые не успевают выйти, приводит к образованию пустот. Они серьёзно снижают качество всего полученного металла. Чтобы не допустить таких образований, на этапе плавки, производят специальную дегазацию. Чтобы добиться наилучшего эффекта, эту операцию проводят в специальных вакуумных камерах. Таким образом удаётся существенно повысить плотность и улучшить физико-механические свойства полученной партии металла.

Достоинства и недостатки кислородно-конвертерного способа

К основным достоинствам способа относятся:

  • по сравнению с другими процессами выплавки у него более высокая производительность;
  • конструктивная схема самого кислородного конвертера достаточно проста (обыкновенный металлический резервуар, то есть корпус, внутри которого находится огнеупорный материал);
  • низкая стоимость расходов на огнеупоры;
  • невысокая себестоимость получаемой стали;
  • низкие капитальные затраты на строительство, даже с учётом добавления стоимости на строительство кислородных станций.

Опыт эксплуатации конвертеров показал, что экономическая эффективность превышает мартеновский способ на 14%, а электроплавильный на 25%.

К наиболее явно выраженным недостаткам относятся:

  • необходимость загрузки в конвертер только жидкого чугуна. Добавление и последующая переработка металлического вторсырья возможна только в небольшом количестве (не более 10%);
  • на этапе технологической продувки вместе с углеродом выгорает достаточно большое количество полезного железа. Технологические потери могут достигать 15%;
  • возникают сложности в организации системы контроля и регулирования конвертерного процесса выплавки стали. Это связано с высокой скорость протекания химических процессов;
  • недостаточный контроль не позволяет получать сталь точно заданных технических характеристик.

Область применения конвертерных видов стали

Имеющиеся недостатки несколько ограничивают область применения подобной стали. Из неё производят такие деталей, к которым не предъявляют повышенные технические требования. В кислородных конвертерах получают продукцию трёх видов: углеродистую, легированную и низколегированную сталь. Эти марки используются для изготовления проволоки (катанки), труб небольшого диаметра, отдельных видов рельс.

Специальные изделия активно применяются в строительстве. Практически вся так называемая автоматная сталь изготавливается по конвертерной технологии. Из неё производят большое количество метизной продукции: болты, гайки, шурупы, саморезы, скобы и так далее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Производство стали в конвертерах

Обогащение дутья кислородом увеличивает производительность конвертеров и улучшает качество стали. Ускоренное окисление примесей сокращает длительность продувки и улучшает тепловой баланс конвертера: потери тепла зависят от продолжительности передела и количества газов, которое при обогащенном дутье уменьшается. В результате этого выявляются резервы тепла, позволяющие вводить охлаждающие добавки — скрап или железную руду и этим резко увеличить производительность по стали.

Растворимость азота пропорциональна корню квадратному из парциального давления его в газах:

Полная замена воздушного дутья техническим кислородом могла бы полностью исключить азот из газов и резко снизить содержание его в стали. Однако при продувке чугуна через днище конвертера техническим кислородом или дутьем высокого обогащения окислительные процессы развиваются с такой высокой интенсивностью и с таким большим выделением тепла, что из за местного перегрева у входа дутья фурмы и днище быстро прогорают и требуют частой замены. В связи с этим обогащение дутья кислородом возможно не более чем до 35%. Продувая чугун воздухом, обогащенным до 30% О2, удается получить сталь с концентрацией азота 0,008—0,005%, близкую по качеству к мартеновской. Полное исключение азота из дутья возможно путем применения кислорода в смесях с водяным паром или двуокисью углерода. Диссоциация Н2О и СО2 способствует поглощению избытка тепла и предупреждает местный перегрев, сохраняя фурмы и днище от преждевременного износа. Азот в стали таким путем снижается до содержания

0,002%. Хорошо удаляются фосфор и сера. Продувка чугуна газовыми смесями распространена на ряде европейских заводов.

Кислородно-конвертерный процесс

Идея окисления чугуна кислородом сверху возникла при обдуве металла в ковше в 1934 г. А. И. Мозговым. В промышленном масштабе она была осуществлена на заводах Австрии в Линце и Донавице в 1952—1953 гг. С тех пор доля стали, выплавленной в кислородных конвертерах, непрерывно возрастает. Способ заключается в обработке жидкого чугуна в глуходонных конвертерах кислородом, подаваемым при высоком давлении (800—1200 кН/м 2 ) вертикальной фурмой, введенной через горловину (рис.).

Рис. Схема кислородно-конвертер ной продувки при обычном (а) и вы соком (б) положении фурмы

Применение технического кислорода делает процесс независимым от состава чугуна; даже при малом содержании одного или нескольких элементов, дающих наибольший приход тепла (Si, Мn, Р), можно конвертировать чугун в сталь. Основная футеровка и основные шлаки позволяют успешно перерабатывать чугун с повышенным содержанием фосфора и серы. Кислородно конвертерным способом перерабатывают чугун любого состава, однако наиболее выгодно следующее содержание примесей: 3,7-4,4% С; 0,3-1,7% Si; 0,4-2,5% Мn; 0,3% Р; 0,03—0,08% Возможность конвертерного передела мартеновского чугуна по зволяет упростить доменное производство данного завода выплавкой одного вида чугуна для двух передельных цехов. Чугун с содержанием 0,2—0,3% фосфора продувают с промежутокным сливом и наводкой нового шлака, в Советском Союзе при обычном содержании фосфора до 0,15% этого не требуется. Количество добавляемого скрапа определяется содержанием кремния и марганца в чугуне и его температурой; оно достигает 25—30% от массы чугуна. Железная руда, применяемая как охладитель, должна содержать менее 8% SiО2. Расход извести составляет до 9% от массы металлической шихты.

Конструкция кислородного конвертера

Кислородный конвертер показан на рис. 2. Емкость современных конвертеров составляет от 70 до 300 т, в настоящее время в строятся конвертеры на 300 т, а в ближайшем будущем будут строиться конвертеры на 350 т стали и более. Корпус конвертера — сварной, изготовлен из стальных листов толщиной 50—100 мм. Конвертеры новой конструкции имеют так называемую «тигельную» форму, т. е. делаются без разъемов. Цапфами, закрепленными на корпусе секторами или кольцом, конвертер опирается на станины. Для поворачивания 100•т конвертера ставят два электродвигателя. Мощность каждого электродвигателя равна 95 кВт. Футеровка кислородного конвертера— двухслойная: слой, примыкающий к кожуху, изготовлен из магнезитового кирпича и служит несколько лет, внутренний слой, рабочий, заменяемый при каждом ремонте, выполнен из смолодоломитового или смолодоломитомагнезитового кирпича и выдерживает до 600 плавок.

Кислородное дутье подают вертикальной водоохлаждаемой фурмой, которую можно перемещать по высоте. Она состоит из трех коаксиально сваренных труб. По внутренней трубе подается кислород, по наружным — подводится и отводится охлаждающая вода. Формирование кислородной струи производится медной головкой с одним или несколькими соплами. Сопло Лаваля позволяет подавать кислород со скоростью более 500 м/с

Изменяя расстояние от фурмы до поверхности ванны, управляют глубиной внедрения струи и образования зоны контакта ее со шлаком и металлом. Окислительные процессы в шлаке и на границе шлак — металл регулируют изменением расхода кислорода. В реакционной зоне возникают высокие температуры, достигающие 2200—2400° С. Они вызывают испарение железа и его окисление в газах с выделением из конвертера бурого дыма. По этой причине из газов кислородных конвертеров необходимо улавливать пыль, состоящую из окислов железа, Кислородно-конвертерный цех (рис. 225) состоит из четырех пролетов — загрузочного, конвертерного и двух разливочных. Разливочные пролеты современных цехов имеют машины литья заготовок (МНЛЗ).

Рис. 2. Кислородный конвертор емкостью 100—130 т

Кислородно-конвертерный процесс по химизму не отличается от бессемеровского и томасовского. Здесь также сначала окисляется железо, образующаяся закись железа растворяется в металле, переходит в шлак, образуя железистый шлак и окисляет примеси чугуна. Высокое давление дутья [(9,8—11,7) •10 5 кН/м 2 ] и его сильное окислительное воздействие в малой по объему реакционной зоне с высокими температурами создают условия для одновременного или практически одновременного окисления примесей, чугуна (Si, Мn, С). Периоды окисления отдельных элементов, типичные для донной продувки чугуна воздухом, здесь выражены слабо (рис. 4). Окисление кремния заканчивается за первые 3—5 мин. Марганец окисляется одновременно, однако с меньшей полнотой, а затем частично вновь восстанавливается из шлака.

Читайте также:  Как разрезать закаленное стекло в домашних условиях

Рис. 3. Поперечный разрез здания кислородно-конвертерного цеха с конвертерами емкостью 100—130 т:

1— конвертер; 2 — камин для приема конвертерных газов; 3 —мостовой заливочный кран грузоподъемностью 180/50 т; 4 — мостовой разливочный кран грузоподъемностью 180/50 т; 5 — консольный кран грузоподъемностью 5 т; 6 — консольный поворотный кран; 7 — тележка для изложниц грузоподъемностью 160 т; 8 — тележка для шлакового ковша емкостью 16 м 3 ; 9 — самоходный сталевоз с ковшом емкостью 130 т; 10 — кран грузоподъемностью 3 т; 11 — бункера для запаса сыпучих; 12— весы-дозаторы; 13— чугуновоз с ковшом емкостью 140 т

Важная особенность кислородно-конвертерного процесса — возможность окисления фосфора вскоре после подачи кислоро-

да и дальнейшее усиление дефосфорации. Это объясняется быстрым образованием необходимого известково-железистого шлака. Окисление углерода также начинается сразу после начала подачи дутья. Средняя скорость выгорания углерода составляет 0,4—0,5% С/мин. Интенсивное выделение газовых пузырей поднимает уровень расплавов и создает режим заглубленной струи.

Десульфурация происходит в менее благоприятных условиях, чем дефосфорация, но успешнее, чем при донном воздушном дутье, достигая 40%, причем до 1 /10 серы переходит в газы в виде SO 2.

Возможность быстрого образования основного шлака в начале продувки позволяет успешно перерабатывать фосфористые чугуны, получая годные для удобрения шлаки, богатые Р2О5. Один из способов состоит в применении кусковой извести. В конвертере оставляют конечный шлак предыдущей плавки, добавляют к нему до 7б общего расхода извести, продувают, вводя постепенно еще 20—25% СаО и железную руду. В слитом после этого шлаке оказывается не менее 20% Р2О5. Продолжая продувку, добавляют скрап, остальное количество извести и железную руду. По другому способу (OLP) известь в виде порошка вдувают через кислородную фурму. Железную руду загружают перед продувкой и после слива промежуточного шлака. Во втором периоде добавляют скрап (охладитель), остальную известь и необходимое количество железной руды.

Рис. 4. Изменение состава и температуры металла (а) и состава шлака (б) по ходу кислородно-конвертерного процесса в конвертере емкостью 100 т

Применение технического кислорода резко улучшает качество конвертерной стали, прежде всего по азоту, концентрация которого снижается до 0,007—0,002%. Механические свойства кислородно-конвертерной стали приближаются к свойствам мартеновской стали и даже превышают их.

В настоящее время освоена выплавка кислородным конвертированием малоуглеродистой (кипящей и спокойной), рельсовой, низколегированной, динамной, трансформаторной, судостроительной, электротехнической и других сталей.

Тепловой баланс передела позволяет перерабатывать большие количества скрапа и использовать железную руду, что повышает технико-экономическую эффективность кислородно-конвертерного производства. С увеличением емкости конвертеров до 300—350 т эффективность производства увеличивается. Расход на передел кислородно-конвертерным процессом — низкий, основная доля в себестоимости стали — стоимость материалов; строительство и ввод в действие конвертеров и конвертерных цехов осуществляется в более короткие сроки и значительно дешевле мартеновских. Эти особенности определили на ближайшее время кислородно-конвертерное производство— основным направлением развития сталеварения.

Статья на тему Производство стали в конвертерах

Кислородно-конвертерный способ производства стали

Выплавка стали производится в конвертере (рисунок 3.2), пред­ставляющем собой стальной сосуд грушевидной формы / вмести­мостью 100. 350 т. Внутри конвертер выложен огнеупорным кир­пичом 2 (смолодоломитовый кирпич). В верхней его части находит­ся горловина 3, сбоку — летка 4. Снаружи (в средней части) конвертер опоясан стальным кольцом с двумя цапфами. Цапфы удерживают конвертер и позволяют поворачивать его вокруг гори­зонтальной оси. Поворот конвертера осуществляется электродвига­телями через систему редукторов. Перед началом процесса конвер­тер поворачивают в наклонное положение, загружают металличе­ский лом и заливают жидкий чугун, имеющий температуру 1250. 1400°С. Затем конвертер ставят в вертикальное положение, загру­жают известняк, опускают водоохлаждаемую форму и подают кислород под давлением 1,0. 1,4 МПа. При воздействии кислорода на жидкий металл прежде всего окисляется железо (2Fе+О2 =2FеО), а образующийся оксид железа взаимодействует с примеcями (углеродом, кремнием, марганцем): С+FеО = СО+Fе; 2FеО +Si= SiO2+2Fе;

Мn+FеО = МnО + Fе. Одновременно идет процесс окисления примесей чистым кислородом.

Известь взаимодействует с фосфором, серой и переводит их в шлак:

2Р+5FеО-т-4СаО= (СаО)4Р2О5 + 5Fе. Сера удаляется в шлак с момента продувки и в течение всей плавки: FеS+СаО = СаS + FеО. Но степень десульфурации расплава не превышает 40 % вследствие высокого содержания FеО в шлаке.

Рисунок 3.2 – Схема кислородного конвертера

Контроль плавки ведется по спектру пламени, выходящего из гор­ловины конвертера.

По ходу плавки берут пробы металла на экспресс-анализ. Если содержание углерода соответствует заданному, про­дувку прекращают, поднимают фурму и, повернув конвертер в горизонтальное положение, выпускают сталь через летку в ковш, а затем через горловину слива­ют шлак.

В готовой стали остается кислород в виде оксида железа. Для его восста­новления в ковш вводят раскислители. Если сталь полностью раскислена и при застывании в изложницах из нее почти не выделяются газы, ее называют «спо­койной». При выплавке спокойной стали в качестве раскислителей сначала вво­дят ферромарганец, потом ферросилиций и в последнюю очередь алюминий.

В тех случаях, когда из стали не удален кислород, при ее раз­ливке в изложницы и постепенном охлаждении последний взаимо­действует с углеродом.

Образующийся оксид углерода интенсивно выделяется из кристаллизирующегося слитка. Поверхность метал­ла как бы бурлит, поэтому такую сталь называют «кипящей».

При получении кипящей стали в качестве раскислителя вводят только ферромарганец. Закончив раскисление, приступают к раз­ливке стали по изложницам. Температура стали при разливке -1600. 1650°С.

В кислородных конвертерах в основном выплавляют углеродис­тые, низколегированные и легированные стали. Из таких сталей изготовляют катанку, проволоку, сортовой прокат, лист, трубы, рельсы и широкий сортамент других изделий. Основные технико-экономические показатели работы конвертера: продолжительность плавки в конвертере вместимостью 350 т составляет

50 мин, годо­вая производительность конвертера вместимостью 250 т — более 1,5 млн т, выход годного металла — 90. 92 %, удельный расход кислорода — 50. 55 м3 на 1 т стали. Основным показателем явля­ется себестоимость выработки 1 т стали.

Производство стали в мартеновских печах

Мартеновская печь (рисунок 3.3) сложена из огнеупорного кирпича и стянута рядом стальных балок, образующих наружный каркас.

Внутри печи находится рабочее пространство 3, сверху оно ограни чено сводом, снизу — подом. Под выложен в виде овальной чаши в которой происходит процесс плавки. В передней стенке печи имеются загрузочные окна 4, через которые загружают шихтовы материалы и следят за ходом плавки. В задней стенке устраивают отверстия для выпуска стали и шлака.

В торцах печи расположены головки 2, соединяющие плавиль ное пространство с регенераторами /. Последние представляют камеры, выложенные огнеупорным кирпичом, и служат для подо грева воздуха и газообразного топлива. Печи, работающие на низкокалорийном топливе, имеют с каждой стороны по два регенератора, а печи, работающие на жидком топливе и высококалорийном газе— по одному регенератору с каждой стороны.

По конструкции мартеновские печи делятся на стационарные (неподвижные) и качающиеся. В качающихся печах рабочее пространство заключено в металлический кожух, рама которого опирается на катки, позволяющие наклонять печь с помощью гидравлического или механического привода. В таких печах облегчается загрузка шихты, удаление шлака и разливка готовой стали, но из за сложности конструкции они применяются редко.

На многих заводах работают двухванные печи. Это наиболее производительные подовые сталеплавильные агрегаты. Вместимость современных мартеновских печей — 600. 900 т.

В зависимости от состава шихты различают скрап-процесс и скрап-рудный процессы плавки. При скрап-процессе в печь загружаются скрап (55. 75 %) и чушковый чугун (25. 45%). При скрап-рудном процессе в печь заливают жидкий чугун (55. 75 %), добавляют руду (12. 20%) и скрап. Наиболее распространен скрап-рудный процесс плавки.

Рисунок 3.3 – Схема технологического процесса мартеновской печи

Процессы плавки в мартеновских печах делят на кислые и ос­новные. Характерные особенности кислого процесса: печь футерует­ся кислым огнеупорным кирпичом (динасовый кирпич, кварцевый песок), используется шихта с малым содержанием серы и фосфора, удаление которых в кислых печах затруднено. При основном про­цессе плавки футеровка печи выполняется из магнезитового или доломитового кирпича, для удаления серы и фосфора в шихту вво­дят известняк.

Основной скрап-рудный процесс включает заправку пода и отко­сов, завалку и прогрев твердой шихты, заливку жидкого чугуна, плавление, кипение, раскисление, доводку и выпуск готовой стали.

Заправка пода и откосов заключается в засыпке доломитовым или магнезитовым порошком выбоин и ямок, разъеденных шлаком. Для лучшей приварки порошка к поду эту операцию проводят при повышенных температурах.

Завалка шихты производится завалочными машинами. Сначала загружают часть лома, а на него — известняк и железную руду. После прогрева загружают остальной лом и нагревают до темпера­туры плавления чугуна.

Заливка жидкого чугуна производится из ковша по специально установленному желобу.

В период загрузки и плавления шихты происходит окисление примесей за счет кислорода, содержащегося в печных газах и руде, а после образования шлака — содержащегося в оксиде железа, растворенном в шлаке. Окисление примесей (С, Si, Мn, Р) идет по тем же реакциям, что и при конвертерном процессе. Известняк пере­водит в шлак серу и фосфор.

Важным моментом плавки является период «кипения» — выде­ления образующегося оксида углерода в виде пузырьков. Металл при этом перемешивается, выравниваются его температура и хими­ческий состав, удаляются газы, всплывают неметаллические вклю­чения. По достижении требуемого содержания углерода в кипящем металле, что определяется путем быстрого анализа отбираемых проб, приступают к последней стадии плавки — доводке и раскисле­нию металла. В печь вводят рассчитанную дозу ферромарганца и ферросилиция, в результате чего уменьшается содержание оксида железа в металле (металл раскисляется).

После раскисления берут контрольную пробу металла и шлака, пробивают летку и по желобу выпускают сталь в ковши. Продол­жительность плавки стали в мартеновской печи составляет 8. 16 ч. Печь работает непрерывно. Длительность функционирования печи в основном зависит от стойкости ее свода. Стойкость динасового свода — 200. 350 плавок, магнезито-хромитового — 300. 1000 плавок.

Основными показателями, характеризующими работу мартенов­ских печей, являются: съем стали с 1 м 2 площади пода в сутки (в среднем составляет 8. 12, при интенсификации процесса-20. 30 т/м2), расход металлошихты на 1 т годных слитков (1050. 1200 кг), выход годного (91. 95 %), расход условного топлива на 1 т стали (10. 20% от массы выплавляемой стали), выплавка стали на одного рабочего (в крупных мартеновских цехах при скрап-рудном процессе — 2000. 3000 т в год), себестоимость 1 т мартеновской стали (колеблется от 80 до 116 руб.).

Приведенные технико-экономические показатели мартеновского производства зависят и от принятой организации работы.

Наметилась устойчивая тенденция к увеличению удельного веса выплавки стали кислородно-конвертерным способом, как более технически совершенным и экономически эффективным. Удельный вес выплавки стали в стране в мартеновских печах снизился, она составляет 30. 35 % от общего ее производства.

Читайте также:  Винный пресс своими руками

В то же время часть крупных мартеновских цехов в XII пяти­летке реконструируется: на месте мартеновских печей устанавли­ваются дуговые сталеплавильные агрегаты или обычные мартенов­ские печи заменяются на двухваныые с использованием кислорода как интенсификатора плавки. Применение методов внепечной обра­ботки стали в сочетании с системами автоматизации контроля и управления технологическим процессом плавки позволит повы­сить качество металла и использовать мартеновские печи для про­изводства высококачественных и высоколегированных сталей.

Дата добавления: 2014-01-15 ; Просмотров: 703 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Особенности кислородно-конвертерного способа выплавки стали

В 1855 году англичанин Генри Бессемер провел интереснейший опыт: он расплавил в тигле кусок доменного чугуна и продул его воздухом. Хрупкий чугун превратился в ковкую сталь. Все объяснялось очень просто – кислород воздуха выжигал углерод из расплава, который удалялся в атмосферу в виде оксида и диоксида. Впервые в истории металлургии для получения продукта не требовался дополнительный подогрев сырья. Это и понятно, ведь Бессемер реализовал экзотермическую реакцию горения углерода. Процесс был удивительно быстротечен. В пудлинговой печи сталь получали лишь за несколько часов, а здесь – за считанные минуты. Так Бессемер создал конвертер – агрегат, превращающий расплавленный чугун в сталь без дополнительного нагрева. Д.И. Менделеев назвал бессемеровские конвертеры печами без топлива. А поскольку по форме агрегат Бессемера напоминал грушу, его так и называли – бессемеровская “груша”.

В бессемеровском конвертере можно переплавлять не всякий чугун, а только такой, в составе которого имеются кремний и марганец. Соединяясь с кислородом подаваемого воздуха, они выделяют большое количество теплоты, которая и обеспечивает быстрое выгорание углерода. Все же теплоты не хватает, чтобы расплавлять твердые куски металла. Поэтому в бессемеровском конвертере нельзя перерабатывать железный лом или твердый чугун. Это резко ограничивает возможности его применения.

Бессемеровский процесс – быстрый, дешевый и простой способ получения стали, но есть у него и большие недостатки. Поскольку химические реакции в конвертере идут очень быстро, то углерод выгорает, а вредные примеси – сера и фосфор – остаются в стали и ухудшают ее свойства. Кроме того, при продувке сталь насыщается азотом воздуха, а это ухудшает металл. Вот почему как только появились мартеновские печи, бессемеровский конвертер стал редко употребляться для выплавки стали. Гораздо больше конвертеры использовали для выплавки цветных металлов – меди и никеля.

Сегодняшний конвертер, конечно, можно в определенном смысле называть потомком бессемеровского детища, ибо в нем, как и прежде, сталь получают, продувая жидкий чугун. Но уже не воздухом, а технически чистым кислородом. Это оказалось намного эффективнее.

Кислородно-конвертерный способ выплавки стали пришел в металлургию более чем полвека назад. Созданный в Советском Союзе по предложению инженера-металлурга Н.И. Мозгового, он полностью вытеснил бессемеровский процесс. А первая в мире тонна кислородно-конвертерной стали была успешно выплавлена в 1936 году на киевском заводе “Большевик”.

Оказалось, что таким способом можно не только перерабатывать жидкий чугун, но и добавлять в него значительные количества твердого чугуна и железного лома, который раньше можно было перерабатывать только в мартеновских печах. Вот почему кислородные конвертеры получили такое большое распространение.

Но только в 1950-е годы конвертеры для выплавки стали окончательно выдвинулись на первый план. Степень использования тепла в кислородном конвертере гораздо выше, чем в сталеплавильных агрегатах подового типа. Тепловой коэффициент полезного действия конвертера составляет 70 процентов, а у мартеновских печей не более 30. Кроме того, газы отходящие из конвертера, используются при дожигании в котлах-утилизаторах, или как топливо при отводе газов из конвертера без дожигания.

Существует три вида конвертеров: с донной продувкой, верхней и комбинированной. В настоящее время наиболее распространенными в мире являются конвертеры с верхней продувкой кислородом – агрегаты весьма производительные и относительно простые в эксплуатации. Однако в последние годы во всем мире конвертеры с донным и с комбинированным (сверху и снизу) дутьем начинают теснить конвертеры с верхней продувкой.

Рассмотрим устройство кислородного конвертера с верхней продувкой. Средняя часть корпуса конвертера цилиндрической формы, стены ванны сферической формы, днище плоское. Верхняя шлемная часть конической формы. Кожух конвертера выполняют из стальных листов толщиной 30 – 90 миллиметров. В конвертерах садкой до 150 тонн днище отъемное, крепят его к корпусу болтами, что облегчает ремонтные работы. При садке 250-350 тонн конвертер делают глуходонным, что вызвано необходимостью создания жесткой конструкции корпуса, гарантирующей от случаев прорыва жидкого металла.

Корпус конвертера крепят к специальному опорному кольцу, к которому приваривают цапфы. Одна из цапф через зубчатую муфту соединена с механизмом поворота. В конвертерах вместимостью больше двухсот пятидесяти тонн обе цапфы являются приводными. Конвертер цапфами опирается на подшипники, установленные на станинах. Механизм поворота позволяет вращать конвертер вокруг горизонтальной оси.

Корпус и днище конвертера футеруют огнеупорным кирпичом. Подача кислорода в ванну конвертера для продувки металла осуществляется через специальную фурму, вводимую в горловину конвертера.

Первой операцией конвертерного процесса является загрузка скрапа. Конвертер наклоняют на некоторый угол от вертикальной оси и специальным коробом-совком вместимостью через горловину загружают в конвертер скрап – железный и стальной лом. Обычно загружают 20-25 процентов скрапа на плавку. Если скрап не подогревают в конвертере, то затем сразу же заливают жидкий чугун. После этого конвертер устанавливают в вертикальное положение, через горловину в конвертер вводят кислородную фурму.

Для наводки шлака в конвертер по специальному желобу вводят шлакообразующие материалы: известь и в небольшом количестве железную руду и плавиковый шпат.

кислородный конвертерный сталь чугун

После окисления примесей чугуна и нагрева металла до заданных величин продувку прекращают, фурму из конвертера удаляют и сливают металл и шлак в ковши. Легирующие добавки и раскислители вводят в ковш.

Продолжительность плавки в хорошо работающих конвертерах почти не зависит от их вместимости и составляет 45 минут, продолжительность продувки – 15-25 минут. Каждый конвертер в месяц дает 800-1000 плавок. Стойкость конвертера – 600-800 плавок.

Движение металла в конвертере весьма сложное, помимо кислородной струи, на жидкую ванну воздействуют пузыри оксида углерода. Процесс перемешивания усложняется еще и тем, что шлак проталкивается струей газа в толщу металла и перемешивается с ним. Движение ванны и вспучивание ее выделяющимся оксидом углерода приводят значительную часть жидкого расплава в состояние эмульсии, в которой капли металла и шлака тесно перемешаны друг с другом. В результате этого создается большая поверхность соприкосновения металла со шлаком, что обеспечивает высокие скорости окисления углерода.

Конвертеры с донной продувкой кислородом из-за меньшего угара железа позволяют получить больший (на 1,5-2 процента) выход годной стали по сравнению с конвертерами с верхней продувкой. Плавка в 180-тонном конвертере с донной продувкой длится 32-39 минут, продувка – 12 – 14 минут, то есть производительность выше, чем у конвертеров с верхней продувкой. Однако необходимость промежуточной замены днищ нивелирует это различие в производительности.

Первые конвертеры с донной продувкой за рубежом были построены в 1966-1967 годах. Необходимость создания такого конвертера обусловлена, в основном, двумя причинами. Во-первых, необходимостью переработки чугунов с повышенным содержанием марганца, кремния и фосфора. Поскольку передел такого чугуна в конвертерах с верхней продувкой сопровождается выбросами металла в ходе продувки и не обеспечивает должной стабильности химического состава готовой стали. Во-вторых, тем, что конвертер с такой продувкой является наиболее приемлемой конструкцией, позволяющей осуществить реконструкцию существующих бессемеровских и томасовских цехов, и вписывается в здание существующих мартеновских цехов. Этому конвертеру свойственно наличие большого числа реакционных зон, интенсивное окисление углерода с первых минут плавки, низкое содержание оксидов железа в шлаке. В силу специфики работы сталеплавильной ванны при донной продувке в конвертерах подобного типа выход годного несколько выше, чем в других конвертерах, а запыленность отходящих газов ниже.

В конвертерах с донной продувкой, имеющих большое число фурм, все технологические процессы протекают интенсивнее, чем в конвертерах с верхней продувкой. Однако общая производительность конвертеров с донной продувкой не превышает значительно таковую для конвертеров с верхней продувкой по причине ограниченной стойкости днищ.

Чтобы предохранить кладку днища конвертера от действия высоких температур, фурму делают в виде двух коаксиальных трубок – по центральной подается кислород, а по периферийной – какое-либо углеводородное топливо, чаще всего природный газ. Таких фурм обычно 16-22. Большое число более мелких фурм обеспечивает лучшее перемешивание ванны и более спокойный ход плавки.

Струя топлива отделяет реакционную зону от днища, снижает температуру около днища в месте выхода кислородных струй за счет отбора тепла на нагрев топлива, крекинг и диссоциации составляющих топлива и продуктов их окисления. Охлаждающий эффект, кроме того, обеспечивается пылевидной известью, которая подается в струю кислорода. Таким образом, продувка расплавленного металла несколькими струями кислорода снизу создает ряд благоприятных особенностей в работе конвертера. Обеспечивается большее число реакционных зон и большая межфазная поверхность контакта кислородных струй с металлом. Это позволяет увеличить интенсивность продувки, повысить скорость окисления углерода. Улучшается перемешивание ванны, повышается степень использования кислорода. В результате появляется возможность расплавления больших по массе кусков скрапа. Лучшая гидродинамика ванны обеспечивает более ровный и спокойный ход всей плавки, практически исключает выбросы. В силу этого в конвертерах с донной продувкой можно перерабатывать чугуны с повышенным содержанием марганца и фосфора.

Стремление повысить производительность агрегатов одновременно с необходимостью повысить однородность состава и температуры металла при возможности изготовления сталей широкого диапазона привело к использованию комбинированной продувки при относительно небольшом (по сравнению только с донной продувкой) количестве газов, вдуваемых через фурмы, установленные в днище конвертера. В последнее время появилось два основных варианта такого процесса, когда снизу подают кислород или инертные газы с целью обеспечить интенсивное перемешивание ванны и ускорить процесс удаления примесей. При этом, как и при донной продувке, снизу вместе с газами может подаваться пылевидная известь. По такому важному показателю, как возможный расход скрапа, конвертеры с верхней, донной и комбинированной продувкой оказываются приблизительно на одном уровне, при несколько более высоком выходе годного при донной продувке.

В настоящее время в мире применяется и разрабатывается много различных методов комбинированной продувки расплавленной ванны, рационально сочетающих верхнюю и донную продувку, причем в последней используется как кислород, так и инертные газы (аргон, азот).

В кислородно-конвертерном процессе с верхней продувкой достаточно интенсивное перемешивание достигается только в середине плавки при интенсивном окислении углерода. В начале и в конце плавки перемешивание недостаточно, что затрудняет глубокое рафинирование металла от серы и фосфора. Комбинированная подача кислорода через верхнюю и донные фурмы еще более, чем при одной донной продувке, ускоряет процесс окисления углерода и повышает производительность конвертера.

По сравнению с чисто донной продувкой в случае комбинированного процесса в сопоставимых условиях температура металла выше. Кроме того, при комбинированной продувке уменьшение расхода кислорода через верхнюю фурму снижает пылеобразование и разбрызгивание.

И еще одно преимущество кислородных конвертеров: здесь все процессы механизированы и автоматизированы; все чаще управление конвертерами поручается компьютерам.

Ссылка на основную публикацию
×
×
Adblock
detector