Электросталеплавильное производство стали - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Электросталеплавильное производство стали

Электросталеплавильное производство — ПОЛНЫЙ КОМПЛЕКТ ПРОГРЕССИВНЫХ И ЭНЕРГОСБЕРЕГАЮЩИХ РЕШЕНИЙ

Точная настройка процесса производства стали в электропечах для оптимизации баланса шихтовых материалов, управления технологическим процессом, производственным циклом, логистикой и производительностью требует глубокого знания технологии и подробного анализа требований к производству стали.

Устойчивость при производстве стали востребована, как никогда ранее. Изменяющиеся условия рынка требуют от производителей, желающих сохранить конкурентоспособность, увеличения отдачи от их агрегатов. Компания Primetals Technologies предлагает заказчику ту электродуговую сталеплавильную печь, которая точно отвечает его требованиям. Наши предлагаемые агрегаты сочетают высокую производительность с максимальной эксплуатационной готовностью, они перерабатывают разнообразные шихтовые материалы и производят широкий сортамент стали без длительных настроек оборудования, что приводит к снижению темпов производства. В то же время снижаются как исходные капитальные, так и сквозные эксплуатационные затраты, а также воздействие электросталеплавильного передела на окружающую среду становится минимальным.

Преимущества электродуговых печей компании Primetals Technologies:

  • Высокая надежность вашего предприятия – гарантированное выполнение договорных соглашений;
  • На передовом краю инноваций – Primetals Technologies – это настоящий лидер: посмотрите, например, наша ДСП «Ultimate» обеспечивает макс. производительность, гибкое управление процессами и высокую эксплуатационную готовность, и наша ДСП «Quantum» является наиболее эффективной и экологичной печью в металлургии;
  • Краткосрочность пусковых работ – благодаря удобству эксплуатации системы в сочетании с компетенцией наших специалистов-технологов;
  • Высокое качество и минимальный риск простоев – благодаря высокой степени унификации компонентов системы;
  • Краткий период амортизации ваших инвестиций – благодаря низким расходным коэффициентам, высокому уровню эксплуатационной готовности и стабильной производительности.

Наши технологии

Высокая производительность: ДСП «Ultimate»

Концепция дсп «ultimate» основана на более, чем 40-летнем опыте и инновационном потенциале primetals technologies в области электродуговых печей. Буквально все в этом новом поколении печей «доведено до полного совершенства». Современная технология производства электростали и особенности конструкции обеспечивают максимальную эффективность печи, как в плане количества, так и качества. Крайне интенсивная подача энергии на уровне 1500 ква на тонну жидкой стали, инновационная технология горелок rcb для интенсификации процессов, а также увеличение размеров печи для завалки шихты одной корзиной объединены в одно целое только печью дсп «ultimate». Результат заключается в крайне сжатом пусковом периоде, что реально сказывается на увеличении производства. Например, дсп «ultimate» емкостью 120 тонн обеспечивает производительность аналогичную стандартной 180-тонной печи или при сохранении той же массы выпускаемой стали – производительность на 50% выше.

Высокий КПД: ДСП «Quantum»

Основываясь на оптимальной концепции нагрева и плавления, ДСП «Quantum» обеспечивает минимальные передельные затраты, максимальную производительность и должную экологичность. Благодаря эффективному использованию рекуперации энергии осуществляется 100% разогрев лома, в результате чего расход энергии составляет менее 280 кВтч/т. Это стало возможным благодаря трапециевидной шахте в сочетании в измененной системой удержания, в результате чего обеспечивается оптимальная подача лома и улучшение потоков отходящего газа, осуществляющее эффективную передачу тепла. В результате плавления лома в болоте большой емкости ванна ведет себя спокойно при самом низком из наиболее возможных уровне фликеров, что также поддерживает эффективность нагрева. В сочетании с прогрессивной системой бесшлакового выпуска стали из печи (конструкция сильфона FAST) данная новая концепция печи позволяет осуществлять загрузку, выпуск и закрытие выпускного отверстия «под напряжением».

Интеллектуальные системы автоматизации для производства стали

Наши решения в области автоматизации направлены на обеспечение высокой производительности и рентабельности в электросталеплавлении. Для широкого спектра агрегатов разной конструкции, производственных стратегий и шихтовых материалов разработаны обновляемые комплексные решения по автоматизации модульного и расширяемого типа.

Яркие примеры оптимизации работы ДСП с помощью автоматизации:

Система регулировки электродов

Система «Melt Expert» разработана на основе более чем 35-летнего опыта работы с известными системами регулировки электродов «Arcos» и «Simelt». Это полностью автоматическая система для регулировки электродов в трехфазных дуговых сталеплавильных печах и в агрегатах ковш-печь. «Melt Expert» – Система осуществляет регулирование и динамическую коррекцию электрической дуги, обеспечивая наиболее эффективное использование электроэнергии. «Condition monitoring» – Система отслеживания электродов и печного оборудования также включена в портфолио.

Оптимизация процесса в ДСП

Наша система оптимизации технологического процесса для ДСП поддерживает широкий спектр сталей, включая углеродистые, нержавеющие и специальные марки стали. Применение системы «Steel Expert» – комплекса металлургических технологических моделей для оптимизации процессов производства стали, ведет к снижению попыток по коррекции обработки стали, к минимальному количеству переназначенных плавок и к точному соблюдению жестких производственных графиков.

Полномасштабная оптимизация процесса

«EAF Heatopt» – Целостная система оптимизации технологического процесса, сочетающая систему отслеживания отходящих газов ДСП и полномасштабную модель технологического процесса. Результаты непрерывно проводимого анализа отходящих газов ДСП и газового потока используются в полномасштабной модели технологического процесса для управления в замкнутом контуре горелками и узлами кислородной инжекции. Также осуществляется регулировка вдувания углерода для оптимизации режима наведения пенистого шлака. Применение данной системы направлено на повышение эффективности потребления энергии, электродов, кислорода и природного газа, а также выхода годного по металлу и производительности.

Следующие отличительные решения:

  • Печное распределительное устройство – Идеально адаптировано даже к самым крайним требованиям ДСП с дугой сверхвысокой мощности;
  • Lomas – Полностью автоматизированная система непрерывного измерения и анализа отходящих газов;
  • Fluid Guard – Сертифицированная система безопасности по определению утечек.

Производство стали в электропечах

В настоящее время для выплавки стали широко применяют электропечи. Основными достоинствами электропечей являются:

  • возможность быстрого нагрева металла, что позволяет вводить в печь большое количество легирующих добавок;
  • возможность создать окислительную, восстановительную, нейтральную или вакуумную атмосферу, что позволяет выплавлять сталь любого состава, раскислять металл с образованием минимального количества неметаллических включений;
  • возможность плавно и точно регулировать температуру металла.

Поэтому электропечи используют для выплавки высоколегированных, конструкционных, специальных сталей и сплавов.

Плавильные печи

Основное количество электростали выплавляют в дуговых печах. Доля стали, выплавляемой в индукционных печах, в общем объеме выплавки невелика.

Дуговая плавильная печь

Дуговая электропечь состоит из рабочего пространства с электродами и токоподводами и механизмов, обеспечивающих наклон печи, удержание и перемещение электродов и загрузку шихты (рисунок 24). Плавку стали ведут в рабочем пространстве печи, ограниченным куполообразным сводом, снизу сферическим подом и с боков стенками. Огнеупорная кладка пода и стен заключена в металлический кожух. Она может быть основной (магнезитовой, магнезитохромитовой) или кислой (динасовой). В съемном своде расположены три цилиндрических электрода из графитизированной массы, которые с помощью специальных механизмов могут перемещаться вверх или вниз, автоматически регулируя длину дуги. Печь питается трехфазным переменным током.

Шихтовые материалы загружают на под печи сверху в открываемое рабочее пространство. После их расплавления в печи образуется слой металла и шлака. Плавление и нагрев шихты осуществляется за счет тепла электрических дуг, возникающих между электродами и жидким металлом или металлической шихтой.

Для управления ходом плавки в печи имеются рабочее окно и отверстие для выпуска по желобу готовой стали (летка). С помощью поворотного механизма печь может наклоняться в сторону сталевыпускного отверстия или рабочего окна. Вместимость дуговых печей может составлять 0,5 – 400 т. В металлургических цехах используют электропечи с основной футеровкой, а в литейных – с кислой.
В основной дуговой печи можно осуществить плавку двух видов:

  • без окисления примесей методом переплава шихты из легированных отходов;
  • с окислением примесей на углеродистой шихте.

Плавка без окисления примесей

Шихта для такой плавки должна иметь низкое содержание фосфора и меньше, чем в выплавляемой стали, марганца и кремния. Производят нагрев и расплавление шихты. По сути это переплав. Однако в процессе плавки часть примесей окисляются (алюминий, титан, кремний, марганец).

После расплавления шихты из металла удаляют серу, наводя основной шлак. При необходимости науглероживают и доводят металл до заданного химического состава. Затем проводят диффузионное раскисление, подавая на шлак мелкораздробленный ферросилиций, алюминий, молотый кокс. Плавкой без окисления примесей выплавляют стали из отходов машиностроительных заводов.

Плавка с окислением примесей

Плавку применяют для производства конструкционных сталей и ведут на углеродистой шихте. В печь загружают шихту, состоящую из стального лома (

90%), чушкового передельного чугуна (до 10%), электродного боя или кокса для науглероживания металла и известь (2-3%) . Затем опускают электроды, включают ток и начинают плавку. Шихта под действием тепла дуги плавится, металл накапливается на подине печи. Во время плавления шихты кислородом воздуха, оксидами шихты окисляются железо, кремний, фосфор, марганец и частично углерод. Оксид кальция и оксиды железа образуют основной железистый шлак, способствующий удалению фосфора из металла.

Читайте также:  Измельчитель пожнивных остатков своими руками

После прогрева металла и шлака до температуры 1500 – 1550 °С в печь загружают руду и известь и проводят период кипения. Когда содержание углерода будет меньше заданного на 0,1%, кипение прекращают и удаляют из печи шлак. Затем проводят удаление серы и раскисление металла, доведение химического состава до заданного. Раскисление проводят осаждением и диффузионным методом. После удаления железистого шлака в печь подают раскислители (силикокальций, силикомарганец) для осаждающего раскисления. Затем в печь загружают известь, плавиковый шпат, шамотный бой для получения высокоосновного шлака. После расплавления флюсов и образования высокоосновного шлака на его поверхность вводят раскислительную смесь для диффузионного раскисления (известь, ферросилиций, плавиковый шпат, молотый кокс). Углерод кокса и кремний ферросилиция восстанавливают оксид железа в шлаке и содержание его в шлаке снижается.

В этот период создаются условия для удаления из металла серы, что объясняется высоким содержанием СаО в шлаке (около 60%), низким содержанием FeO (менее 0,5 %) и высокой температурой металла. Для определения химического состава металла берут пробы и при необходимости в печь вводят ферросплавы для получения заданного химического состава металла. Затем выполняют конечное раскисление стали и выпускают из печи в ковш.
В дуговых печах выплавляют высококачественные углеродистые стали. Это конструкционные, инструментальные, жаропрочные и жаростойкие стали.

Индукционная плавильная печь

Печь состоит из водоохлаждаемого индуктора, внутри которого находится тигель с металлической шихтой (рисунок 25). Через индуктор от генератора высокой частоты проходит переменный ток повышенной частоты. Ток создает переменный магнитный поток, пронизывая куски металла в тигле, наводит в них мощные вихревые токи, нагревающие металл до расплавления и необходимых температур перегрева. Тигель может быть изготовлен из кислых и основных огнеупоров. Емкость тигля составляет до 25 т.

В соответствии с заданным химическим составом металла при загрузке тщательно подбирают состав шихты. Необходимое для этого количество ферросплавов загружают на дно тигля вместе с шихтой. После расплавления шихты на поверхность металла загружают шлаковую смесь для уменьшения тепловых потерь металла и уменьшения угара легирующих элементов, а также для защиты его от насыщения газами.

При плавке в кислой печи после расплавления и удаления шлака наводят новый шлак с высоким содержанием SiO2. Металл раскисляют ферросилицием, ферромарганцем и алюминием перед выпуском его из печи. В печах с кислой футеровкой выплавляют конструкционные стали, легированные другими элементами.

В печах с основной футеровкой выплавляют высококачественные легированные стали с высоким содержанием марганца, никеля, титана, алюминия.
Индукционные печи имеют ряд преимуществ перед дуговыми. Основными их них являются:

  • отсутствие электрической дуги, что позволяет выплавлять сталь с низким содержанием углерода, газов и малым угаром элементов;
  • наличие электродинамических сил, которые перемешивают металл в печи способствуют выравниванию химического состава, всплыванию неметаллических включений;
  • небольшие размеры печей позволяют помещать их в камеры, где можно создать любую атмосферу или вакуум.

К недостаткам этих печей можно отнести:

  • недостаточная температура шлака для протекания металлургических процессов между металлом и шлаком;
  • малая стойкость футеровки, что приводит к частым ремонтам и остановкам.

Поэтому в индукционных печах выплавляют сталь из легированных отходов методом переплава или методом сплавления чистого шихтового железа и скрапа с добавкой ферросплавов.

Электросталеплавильное производство стали

III. Электросталеплавильное производство

Выплавка стали в электрических печах составляет около 8% от выплавки всей стали.

В ближайшее время намечена установка дуговых плавильных агрегатов емкостью 80 и 180 т и индукционных вакуумных печей емкостью 1 и 3 г.

1. Характеристика сталеплавильных печей

Характеристика дуговых плавильных печей

2. Плавка стали в дуговых печах

Технико-экономические показатели работы дуговых электропечей зависят от мощности трансформатора, способа загрузки шихты, сортамента выплавляемых сталей, способа выплавки, стойкости футеровки, организации работы в цехе, выхода годного.

Средняя продолжительность плавок легированных сталей при выплавке на свежей шихте с рудным кипом без применения кислорода составляет 5 час. – 6 час. 30 мин.; удельный расход электроэнергии при этом 750-850 квт-ч/т.

Общие простои дуговых электропечей лучших цехов составляют 4-5%.

Применение кислорода сокращает продолжительность плавки, повышает производительность электропечей на 20-25% и сокращает расход электроэнергии на 1 т стали до 30%.

Технико-экономические показатели плавок быстрорежущий Р18 и нержавеющей стали 1Х18Н9Т

Основная масса стали выплавляется в дуговых электропечах двумя методами: без использования легированных отходов и с их использованием (до 70%). Применение кислорода позволило в обоих случаях при необходимости проводить окисление стальной ванны.

Плавка стали в дуговой электропечи состоит из трех периодов: загрузки агрёгата шихтовыми материалами, расплавления твердой садки и выдержки жидкого металла. За период выдержки ванны проводятся окислительные и восстановительные процессы или только восстановительные.

Расплавление шихты проводится на максимальной мощности трансформатора. Окисление ванны осуществляется железной рудой и кислородом. Диффузионное раскисление металла проводится под белым, карбидным или слабо-карбидным шлаками.

В качестве глубинных раскислителей ванны применяются силикокальций, металлический кальций, силико-цирконий, алюмобарий, церий, магний и ряд других металлов и сплавов.

Для обеспечения более высокого качества металла и оптимального теплового режима плавок применяются специальные термопары (вольфрамо-молибденовые, платина-платинородиевые и др.), позволяющие контролировать температуру металла и шлака по ходу плавки и температуру футеровки.

В целях снижения индуктивных потерь в СССР впервые разработана и осуществлена на некоторых печах трехбифилярная короткая сеть (“треугольник” на электродах). Более 90% всей стали отливается сифоном в чугунные изложницы.

Развес слитков колеблется от 150 кг до 30 г. Стали с высоким содержанием титана разливаются в инертной атмосфере.

Режим дугового электреобогрева слитков

Применение электрообогрева прибылей быстрорежущих слитков повышает выход годного проката на 8-9%.

Непрерывная разливка нержавеющей стали 1Х18Н9Т снижает обрезь металла при прокате и повышает выход годного на 12%.

Применение высокоглиноземистых огнеупоров (Аl2O3 – 75%) увеличивает срок службы сталеразливочных ковшей в 1,5-2 раза и снижает загрязненность металла неметаллическими включениями.

3. Плавка стали в индукционных печах

В индукционных печах выплавляются в основном высоколегированные стали и сплавы специального назначения, имеющие низкое содержание углерода (не более 0,05%) и кремния (не более 0,15%). Емкость индукционных печей колеблется от 150 кг до 8 г.

Техническая характеристика двух типов индукционных вакуумных печей

4. Футеровка плавильных печей

Для изготовления футеровки дуговых и индукционных печей используются высокоогнеупорные основные и кислые материалы. Кислая футеровка выполняется из кварцита (98,8% Si02) с различным зерновым составом.

Основная футеровка индукционных плавильных печей выполняется из магнезито-хромита, глинозема, окиси циркония и других огнеупорных материалов.

Футеровка дуговых печей изготовляется из различных материалов, а именно: подины изготовляются из шамота, магнезитового кирпича и магнезитовой набивки (150-190 мм). Стены печей выполняются тремя, четырьмя блоками из магнезита, доломита (42%) и каменноугольного пека (8%). Своды преимущественно набираются из магнезито-хромитового термостойкого кирпича.

Высокую стойкость показали подины из магнезитового кирпича без набойки и с применением для набивного слоя магнезито-хромитовой массы.

Стойкость основной футеровки электропечей (в плавках)

* ( После 50 плавок тигель заменяют новым независимо от состояния футеровки.)

Электросталеплавильное производство

Потребности в высококачественных конструкционных материалах непрерывно возрастают. Высококачественные стали имеют малые концентрации серы (ниже 0,02%), фосфора (менее 0,01%), кислорода, неметаллических включений и других вредных примесей, содержат различные легирующие элементы (хром, никель, вольфрам, молибден, титан, ванадий). Такие стали производят в электросталеплавильных печах. В них можно создавать и регулировать необходимую температуру, включая весьма высокую, вести плавку в вакууме и контролируемой атмосфере (окислительной, восстановительной, нейтральной).

Конструкции электропечей разнообразны: дуговые, индукционные, плазменные, электронно-лучевые и др. Основное количество сталей выплавляют в дуговых и индукционных печах. В дуговых печах (рисунок 5.3) нагрев металла происходит за счет тепла, выделяемого дугами, которые горят непосредственно между электродами и металлической садкой.

Мощные дуговые печи на переменном токе имеют диаметр ванны около 7,0 м, глубину 1,5 м, общую высоту до 5 м, диаметр графитированного электрода 600 мм. Вместимость печей достигает 100 т.

Читайте также:  Штамповочное производство деталей изготовители

1 – свод; 2 – стенки; 3 – желоб; 4 – сталевыпускное отверстие;

5 – электрическая дуга; 6 – подина; 7 – рабочее окно; 8 – заслонка;

9 – электроды; 10 – шлак; 11 – металл

Рисунок 5.3 – Схема дуговой электропечи

В последние 20 лет внедряются печи постоянного тока, на которых сокращается расход графитовых электродов в 1,5–2,0 раза, электроэнергии – на 5–10%, ферросплавов и огнеупоров – на 15–20%, увеличивается выход металла на 2–4%. Снижается уровень шума, выделение технологических газов и пылей, стабилизируется электрический режим. Это обусловлено тем, что при переменном токе электрод работает, переменно анодом и катодом с частотой 50 раз в секунду, что снижает устойчивость горения дуги. При использовании постоянного тока электрод служит катодом, эмиссионная способность которого выше и устойчивее.

Футеровку дуговых электропечей выполняют из основных или кислых огнеупоров. Наиболее распространены печи с основной футеровкой. При производстве стали в основных электропечах шихту составляют стальной лом, легированные металлические отходы, передельный чугун, шлакообразующие, легирующие добавки, раскислители и другие материалы. Плавки ведут двумя способами: с полным окислением и без окисления примесей.

Процесс с полным окислением проводят тогда, когда перерабатывают материалы с повышенным содержанием фосфора и серы. Для окисления этих элементов и углерода загружают железную руду. Для связывания окисленных примесей и нормального шлакообразования в печь присаживают известь, плавиковый шпат и другие добавки.

После окисления примесей переходят к восстановительному периоду плавки для раскисления (удаления кислорода) металла и удаления серы. На этом этапе, используя сильные восстановители (молотый кокс, 75% ферросилиций, силикокальций, алюминий), переокисленный шлак (оксиды железа и марганца) восстанавливают до металла.

Конечный шлак восстановительного периода имеет состав, %:

55–60 (СаО + СаF2); 18–23 SiO2; 9–14 MgO; 5–10 Al2O3; по 0,5 и менее FeO, MnO, S.

Плавка без окисления (переплав) применяется для легированных отходов, количество которых на заводах высококачественных сталей достигает 25 – 40 % массы слитка. Процесс позволяет экономно использовать легирующие элементы шихты и ферросплавов. Окислительный период здесь отсутствует. Для перевода оксидов в шлак и защиты стали от окисления в печь добавляют некоторое количество извести.

Плавку в кислых дуговых печах применяют при производстве фасонных стальных отливок из ковкого чугуна. Сера и фосфор в кислых шлаках, содержащих до 50% и более оксида кремния, не удаляется, поэтому содержание в исходной шихте этих примесей не должно превышать 0,03%. Преимущество плавки заключается в повышении стойкости футеровки печи.

Электросталеплавильное производство характеризуется относительно небольшим газо- и пылевыделением. Выбросы электродуговых печей составляют, кг/т металла: 1,2–1,5 СО; 0,25–0,30 NOx; 7–10 пыли.

Технико-экономические показатели плавки в дуговых печах: продолжительность 3–4 часа, расход электроэнергии 500–800 кВт×ч и электродов – 5–9 кг на 1 т стали, выход годного металла 88–90%, стоимость шихтовых материалов 50–60% от стоимости последнего.

Для выплавки высококачественных легированных сталей и сплавов специального назначения применяют также индукционные печи (рисунок 5.4).

1 – каркас; 2 – подовая плита (асбоцементные плиты); 3 – индуктор;

4 – изоляционный слой; 5 – тигель; 6 – асбоцементная плита; 7 – сливной носок; 8 – воротник; 9 – гибкий токопровод; 10 – деревянные брусья

Рисунок 5.4 – Индукционная печь

Переменный ток, подводимый к индуктору (первичной обмотке, расположенной на периферии печи) возбуждает ток в металлошихте, загруженной в тигель, и расплавляет ее.

Наиболее крупные печи имеют вместимость до 60 т. Тигли изготавливают из основных (магнезитовых) и кислых (молотый кварцит) огнеупоров.

Шлак не обладает металлическим типом проводимости, поэтому не нагревается в переменном магнитном поле, но он нагревается за счет передачи тепла от металла и по сравнению с ним имеет более низкую температуру, что исключает активные обменные реакции между шлаком и металлом и удаление вредных примесей (серы и фосфора) из стали затруднено. Как следствие, при индукционной плавке необходимо использовать шихту с низким содержанием фосфора и серы. Обычно применяют индукционные печи с кислой футеровкой, стойкость которых достигает 150 плавок, основная футеровка выдерживает только 10–40 плавок.

При плавке стали в индукционных печах газовыделение незначительно, а пылевынос в 5–6 раз меньше, чем в электродуговых печах.

Существуют специальные виды электрометаллургии, которые используют для переплава слитков или заготовок, полученных в массовом производстве. Переплав существенно повышает качество стали вследствие удаления из нее газов и неметаллических включений и получения однородных слитков. В настоящее время известно несколько его видов (вакуумно-дуговой, электронно-лучевой, плазменно-дуговой, электрошлаковый переплав).

Мартеновский процесс

Мартеновский процесс ведут в пламенной отражательной печи, где основное количество тепла, необходимое для процесса, получают при сжигании топлива в горелочных устройствах, расположенных в торцевых частях (сбоку) печи над шихтой. Продукты горения формируют факел, от которого тепло передается ванне, куда загружают металлошихту. Газы через плавильное пространство покидают печь с противоположной от горелки стороны. Значительная часть теплового потока попадает на свод печи, отражается им и лучеиспусканием передается ванне печи. Пламенные отражательные печи имеют прямоугольное сечение и длину, значительно превышающую их ширину и высоту. Они нашли применение в черной и цветной металлургии. Мартеновские печи относятся к числу регенеративных. Сущность регенерации заключается в утилизации тепла продуктов горения для подогрева воздуха и низкокалорийного газа до 1100–1200°С перед вводом их в печь. Для подогрева строят камеры-регенераторы, заполненные кирпичной решеткой и работающие попеременно. По мере остывания одной и нагрева другой пары регенераторов меняют направление движения газа, воздуха и продуктов горения. Газ и воздух нагревают каждый с своем регенераторе. Природный газ при использовании как топливо не подогревают, так как его теплотворная способность обеспечивает необходимую температуру (1800–1900°С) в пламенном пространстве печи.

Сжигание топлива с коэффициентом избытка воздуха 1,05 создает в печи окислительную атмосферу (1–3 О2 и 7–15% СО2), которая окисляет металл. Образующиеся оксиды железа, кислород и двуокись углерода окисляют примеси чугуна. Скорость этих процессов из-за недостаточной концентрации кислорода в печной атмосфере значительно ниже, чем в конвертере, что обусловливает большую продолжительность мартеновской плавки (4–12 ч). Для ускорения окисления примесей чугуна в печь загружают железную руду. Физико-химические основы процессов шлакообразования и раскисления подобны конвертерному производству.

Современные мартеновские печи работают на газообразном (природный газ) и жидком (мазут) топливе. Мартеновские печи – крупные сталеплавильные агрегаты емкостью от 40 до 900 т, габариты которых достигают следующих значений: площадь пода – 190 м 2 ; длина, ширина, глубина ванны соответственно 28; 6,8; 1,4 м; высота свода – 3,5 м.

В зависимости от вида огнеупоров, используемых для футеровки печи, различают кислый и основной мартеновские процессы.

Составом шихты, соотношением твердого и жидкого чугуна реализуют два основных варианта: скрап-процесс и скрап-рудный процесс.

Скрап-процесс применяют на машиностроительных предприятиях или на металлургических заводах, не имеющих доменного производства. Шихта содержит до 60–85% стального лома (скрапа), до 15–40% твердого передельного чугуна (в чушках) и небольшое количество флюса (известняка). Чугун облегчает расплавление шихты, так как более легкоплавкий, чем скрап, и обеспечивает необходимый запас углерода в жидком металле для перемешивания, интенсивного нагрева металла и удаления из него примесей.

Скрап-рудный процесс осуществляют на заводах с доменным производством. Основной частью шихты является жидкий чугун (60–75% от массы металлической шихты), а остальное добавки скрапа (20–40%), железной руды и известняка.

Более распространен основной мартеновский процесс, поскольку кислый менее производителен и эффективен только при скрап-рудном процессе. Для кислого процесса необходима металлошихта с минимальным содержанием фосфора и серы.

Газы мартеновских печей имеют запыленность 2–10 г/м 3 и очищаются в тканевых фильтрах, трубах Вентури, сухих электрофильтрах.

Технико-экономические показатели печи емкостью 900 т составляют: годовая выплавка 1 млн. т, расход условного топлива 60 кг, кислорода 36 м 3 и огнеупоров 20 кг на 1 т стали. Выход годного составляет 92–95%. В структуре себестоимости определяющие затраты связаны с основными (74%), а также добавочными (до 17%) материалами.

Последнее изменение этой страницы: 2016-09-19; Нарушение авторского права страницы

Курсовая работа “Электросталеплавильный способ”

СКАЧАТЬ: Kursovoy_3.zip [207,46 Kb] (cкачиваний: 42)

Краткий исторический обзор развития электрометаллургии стали и ферросплавов

2 Специальная часть

3 Расчетная часть

4 Список используемой литературы

Электросталеплавильному способу принадлежит ведущая роль в производстве качественной и высоколегированной стали. Благодаря ряду принципиальных особенностей этот способ приспособлен для получения разнообразного по составу высококачественного металла с низким содержанием серы, фосфора, кислорода и других вредных или нежелательных примесей и высоким содержанием легирующих элементов, придающих стали особые свойства – хрома, никеля, марганца, кремния, молибдена, вольфрама, ванадия, титана, циркония и других элементов.

Читайте также:  Как правильно резать кафельную плитку плиткорезом?

Преимущества электроплавки по сравнению с другими способами сталеплавильного производства связаны с использованием для нагрева металла электрической энергии. Выделение тепла в электропечах происходит либо в нагреваемом металле, либо в непосредственной близи от его поверхности. Это позволяет в сравнительно небольшом объеме сконцентрировать значительную мощность и нагревать металл с большой скоростью до высоких температур, вводить в печь большие количества легирующих добавок; иметь в печи восстановительную атмосферу и безокислительные шлаки, что предполагает малый угар легирующих элементов; плавно и точно регулировать температуру металла; более полно, чем других печах раскислять металл, получая его с низким содержанием неметаллических включений; получать сталь с низким содержанием серы. Расход тепла и изменение температуры металла при электроплавке относительно легко поддаются контролю и регулированию, что очень важно при автоматизации производства.

Электропечь лучше других приспособлена для переработки металлического лома, причем твердой шихтой может быть занят весь объем печи, и это не затрудняет процесс расплавления. Металлизованные окатыши, заменяющие металлический лом, можно загружать в электропечь непрерывно при помощи автоматических дозирующих устройств.

В электропечах можно выплавлять сталь обширного сортамента.

Краткий исторический обзор развития электрометаллургии стали и ферросплавов.

Развитие современной техники и промышленности основано в основном на применении металла. Получение достаточных количеств металла, обладающего нужными механическими, физическими и физико-химическими свойствами, позволяет сооружать мощные гидроэлектростанции, атомные реакторы и строительные конструкции, а также создавать аппараты химического производства, ракеты и электронно-вычислительные машины.

Интенсивное развитие техники и промышленности способствует увеличению числа применяемых сплавов и изменяет соотношение в удельном объеме производства. Однако первостепенное значение для развития промышленности имеет сталь. Сталеплавильное производство по объему и стоимости продукции превосходит производство других металлов и сплавов вместе взятых. В 1980 г. мировое производство стали превысило 700 млн. т.

Значительный объем производства объясняется широким распространением железных руд (в земной коре содержится железа 4,2%, оно занимает четвертое место после кислорода 49,13%) , относительной легкостью и дешевизной восстановления железа и руд, прекрасными свойствами стали как конструкционного материала. Сталь обладает высокой прочностью, пластичностью, легко поддается механической обработке и сваривается. Присадками легирующих элементов и термической обработкой можно в широком диапазоне изменять ее механические свойства, а также придавать особые физические и химические свойства. Значение легированных сталей особенно возросло в последние годы в связи с увеличением потребностями в стали с особыми свойствами и производство их равно 10 % от общего производства стали. Мировое производство стали в 1850г. составило 50тыс. т, в 1900г. 29млн. т, а в 1968 г. превысило 0,5 млрд. т.

Первым способом производства стали был процесс, предложенный в 1856г. Генри Бессемером и вызвавший переворот в промышленности и железнодорожном строительстве. Бессемеровский процесс впервые позволил получать жидкую сталь из чугуна, за малое время. В этом способе окисление осуществляется в конверторе продувкой жидкого чугуна воздухом.

Здесь тепловые потери невелики и тепла, выделяющегося в результате окисления примесей хватает для нагрева стали до 1600 С.

В 1864г. Мартен, применил разработанный Сименсом принцип регенерации тепла, построил первую печь, которая позволяла получать жидкую сталь из чугуна и переплавлять стальной лом. Эти 2 процесса в своем первом виде, не обеспечивали удаления фосфора и серы из металла, что ограничивало их применение. В 1879г. С. Томас положил начало выплавки стали основным процессам, предложив футеровать конвертор доломитом. Все эти процессы вместе с томасовским расширили возможности сталеплавильного производства.

Наряду с этими процессами, появились первые электросталеплавильные печи. Способ выплавки стали в электрических печах был запатентован еще в 1853г. Пишоном, который разработал конструкцию дуговой печи косвенного действия, т.е. с дугами, горящими между электродами над металлической ванной. В 1879г. Сименс создал печь прямого действия, в которой одним из полюсов электрической дуги явилась металлическая ванна. Однако прототипом современных сталеплавильных печей явилась печь Геру, который в 1899г. изобрел печь прямого действия с 2 электродами, подводимым к металлической ванне. Ток м/у электродами при этом замыкался через ванну, а дуга горела м/у каждым из электродов и металлом или частично покрывающим его шлаком. Первые дуговые печи Геру с 2 электродами были маломощными. Работали они на напряжении 45 В при силе тока 2-3 кА на жидкой шихте и использование их для ведения плавки на тв. завалке вызвало значительные трудности. Первые трехфазные дуговые печи были установлены в 1907г. в США и в 1910г. в России. Вскоре такие печи были построены в ФРГ, Франции и других странах. Широкие возможности в выборе шихты, неограниченный сортамент выплавляемой стали и высокое ее качество, легкость регулирования тепловых процессов, маневренность в последовательности плавок определили распространение трехфазных дуговых печей, которые заняли важное место в сталеплавильном производстве. В дальнейшем трехфазные дуговые печи были в значительной мере усовершенствованы, и в настоящее время они представляют собой крупные легко управляемые агрегаты с высокой степенью автоматизации. Значительные изменения дуговая электропечь претерпела в 60-х годах ХХ в. следствие мощности трансформаторов, совершенствования электрического и технологического режимов плавки производительность дуг.печей в этот период возросла в 2-4 раза по сравнению с производительностью печей аналогичной емкости в 1950-1960 гг. Появилась возможность повысить производительность печей до 100т/ч. Увеличение емкости печей и повышение мощности трансформаторов вызвали значительные улучшения технико – экономических показателей электросталеплавильного производства и определили основные направления его развития. При переходе на мощные трансформаторы разработана новая технология плавки, предусматривающая сокращение восстановительного периода, когда электрическая мощность используется неэффективно. На рубеже XIX и ХХ вв. были созданы и другие электропечи, например индукционные. Первая промышленная индукционная печь с железным сердечником была установлена в Гизинге (Швеция) в 1900 г. Дальнейшего развития эти печи не получили, с 1925 г. в промышленности использовали индукцилнные печи без сердечника. Благодаря развитию атомной энергетики, произошло улучшениу вакуумной техники. Поэтому в 1945-1946 гг. в США было установлено несколько вакуумных индукционных насосов. Несмотря на это, развитие вакуумный индукционный способ получил только в 1950 – 1951 гг. и в дальнейшем связано с развитием ракетной техники и реактивной авиации, требующих применения металлов особой частоты. В 1958 г. были установлены вакуумные индукционные печи с 2,5 – т тиглями, в 1961 г. – 6 – т , в 1968 г. – 15 – т, в 1978 г. – 25 – т.

Развитие индукционных печей вызвало развитие вакуумного дугового переплава в водоохлаждаемого кристаллизатора, позволяющего получать не только очень чистый, но и плотный слиток металла без зональной химической неоднородности. Методом вакуумного дугового переплава получают слитки массой в десятки тонн. Вакуумный дуговой переплав (ВДП) ведут при остаточном давлении 0,2-1,2 Па и такое давление является оптимальным с учетом дегазации металла и условий горения дуги. Дальнейшее понижение давления оказалось возможным при использовании для нагрева металла вместо электрической дуги электронного луча, не требующего для своего прохождения ионизации газов. Это, а также возможность переплавлять самые тугоплавкие металлы (вольфрам, молибден) и поддерживать жидкую ванну в вакууме в течение любого промежутка времени, способствовали развитию электроннолучевого метода получения металла, промышленное применение которого началось в конце 50 – х годов ХХ в. Наряду с процессами плавки в вакууме были разработаны новые способы электроплавки в обычной атмосфере. Важное значение для развития сталеплавильного производства имеет разработанный в 1952 – 1953 гг. в институте электросварки им. Е. О. Патона АН УССР способ электрошлакового переплава (ЭШП) расходуемых электродов, который в настоящее время наряду с ВДП получил широкое применение в качественной металлургии. Высокое качество металла при небольших затратах и простоте производства способствовало быстрому распространению способа ЭШП не только на отечественных заводах, но и на зарубежных. Сегодня находит применение и метод плазмено- дугового переплава (ПДП) стали и тугоплавких металлов с получением слитка в водоохлаждаемом кристалле. Переплав ведут в инертной атмосфере аргона[6].

Ссылка на основную публикацию
×
×
Adblock
detector