Что нужно для пайки микросхем - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Что нужно для пайки микросхем

ПАЙКА SMD ДЕТАЛЕЙ БЕЗ ФЕНА

Все понимают, как можно с помощью обычного паяльника ЭПСН, мощностью 40 ватт, и мультиметра, самостоятельно ремонтировать различную электронную технику, с выводными деталями. Но такие детали сейчас встречаются, в основном только в блоках питания различной техники, и тому подобных силовых платах, где протекают значительные токи, и присутствует высокое напряжение, а все платы управления, сейчас идут на SMD элементной базе.

На плате SMD радиодетали

Так как же быть, если мы не умеем демонтировать и впаивать обратно SMD радиодетали, ведь тогда минимум 70% от возможных ремонтов техники, мы уже самостоятельно не сможем выполнить. Кто нибудь, не очень глубоко знакомый с темой монтажа и демонтажа, возможно скажет, для этого необходимы паяльная станция и паяльный фен, различные насадки и жала к ним, безотмывочный флюс, типа RMA-223, и тому подобное, чего в мастерской домашнего мастера обычно не бывает.

У меня есть дома в наличии, паяльная станция и фен, насадки и жала, флюсы, и припой с флюсом различных диаметров. Но как быть, если тебе вдруг потребуется починить технику, на выезде на заказ, или в гостях у знакомых? А разбирать, и привозить дефектную плату домой, или в мастерскую, где есть в наличии соответствующее паяльное оборудование, неудобно, по тем или иным причинам? Оказывается выход есть, и довольно простой. Что нам для этого потребуется?

Что нужно для хорошей пайки

  • 1. Паяльник ЭПСН 25 ватт, с жалом заточенным в иголку, для монтажа новой микросхемы.

  • 2. Паяльник ЭПСН 40-65 ватт с жалом заточенным под острый конус, для демонтажа микросхемы, с применением сплава Розе или Вуда. Паяльник, мощностью 40-65 ватт, должен быть включен обязательно через Диммер, устройство для регулирования мощности паяльника. Можно такой как на фото ниже, очень удобно.

  • 3. Сплав Розе или Вуда. Откусываем кусочек припоя бокорезами от капельки, и кладем прямо на контакты микросхемы с обоих сторон, в случае если она у нас, например в корпусе Soic-8.

  • 4. Демонтажная оплетка. Требуется для того, чтобы удалить остатки припоя с контактов на плате, а также на самой микросхеме, после демонтажа.

  • 5. Флюс СКФ (спиртоканифольный флюс, растолченная в порошок, растворенная в 97% спирте, канифоль), либо RMA-223, или подобные флюсы, желательно на основе канифоли.

  • 6. Удалитель остатков флюса Flux Off, или 646 растворитель, и маленькая кисточка, с щетиной средней жесткости, которой пользуются обычно в школе, для закрашивания на уроках рисования.

  • 7. Трубчатый припой с флюсом, диаметром 0.5 мм, (желательно, но не обязательно такого диаметра).

  • 8. Пинцет, желательно загнутый, Г – образной формы.

Распайка планарных деталей

Итак, как происходит сам процесс? Кое-что почитайте тут. Мы откусываем маленькие кусочки припоя (сплава) Розе или Вуда. Наносим наш флюс, обильно, на все контакты микросхемы. Кладем по капельке припоя Розе, с обоих сторон микросхемы, там где расположены контакты. Включаем паяльник, и выставляем с помощью диммера, мощность ориентировочно ватт 30-35, больше не рекомендую, есть риск перегреть микросхему при демонтаже. Проводим жалом нагревшегося паяльника, вдоль всех ножек микросхемы, с обоих сторон.

Демонтаж с помощью сплава Розе

Контакты микросхемы у нас при этом замкнутся, но это не страшно, после того как демонтируем микросхему, мы легко с помощью демонтажной оплетки, уберем излишки припоя с контактов на плате, и с контактов на микросхеме.

Итак, мы взялись за нашу микросхему пинцетом, по краям, там где отсутствуют ножки. Обычно длина микросхемы, там где мы придерживаем ее пинцетом, позволяет одновременно водить жалом паяльника, между кончиками пинцета, попеременно с двух сторон микросхемы, там где расположены контакты, и слегка тянуть ее вверх пинцетом. За счет того что при расплавлении сплава Розе или Вуда, которые имеют очень низкую температуру плавления, (порядка 100 градусов), относительно бессвинцового припоя, и даже обычного ПОС-61, и смещаясь с припоем на контактах, он тем самым снижает общую температуру плавления припоя.

Демонтаж микросхем с помощью оплетки

И таким образом микросхема у нас демонтируется, без опасного для нее перегрева. На плате у нас образуются остатки припоя, сплава Розе и бессвинцового, в виде слипшихся контактов. Для приведения платы в нормальный вид мы берем демонтажную оплетку, если флюс жидкий, можно даже обмакнуть ее кончик в нее, и кладем на образовавшиеся на плате “сопли” из припоя. Затем прогреваем сверху, придавив жалом паяльника, и проводим оплеткой вдоль контактов.

Выпаивание радиодеталей с оплеткой

Таким образом весь припой с контактов впитывается в оплетку, переходит на нее, и контакты на плате оказываются очищенными полностью от припоя. Затем эту же процедуру, нужно проделать со всеми контактами микросхемы, если мы собираемся запаивать микросхему в другую плату, или в эту же, например после прошивания с помощью программатора, если это микросхема Flash памяти, содержащая прошивку BIOS материнской платы, или монитора, или какой либо другой техники. Эту процедуру, нужно выполнить, чтобы очистить контакты микросхемы от излишков припоя. После этого наносим флюс заново, кладем микросхему на плату, располагаем ее так, чтобы контакты на плате строго соответствовали контактам микросхемы, и еще оставалось немного места на контактах на плате, по краям ножек. С какой целью мы оставляем это место? Чтобы можно было слегка коснувшись контактов, жалом паяльника, припаять их к плате. Затем мы берем паяльник ЭПСН 25 ватт, или подобный маломощный, и касаемся двух ножек микросхемы расположенных по диагонали.

Припаивание SMD радиодеталей паяльником

В итоге микросхема у нас оказывается “прихвачена”, и уже не сдвинется с места, так как расплавившийся припой на контактных площадках, будет держать микросхему. Затем мы берем припой диаметром 0.5 мм, с флюсом внутри, подносим его к каждому контакту микросхемы, и касаемся одновременно кончиком жала паяльника, припоя, и каждого контакта микросхемы. Использовать припой большего диаметра, не рекомендую, есть риск навесить “соплю”. Таким образом, у нас на каждом контакте “осаждается” припой. Повторяем эту процедуру со всеми контактами, и микросхема впаяна на место. При наличии опыта, все эти процедуры реально выполнить за 15-20 минут, а то и за меньшее время. Нам останется только смыть с платы остатки флюса, растворителем 646, или отмывочным средством Flux Off, и плата готова к тестам, после просушивания, а это происходит очень быстро, так как вещества применяемые для смывания, очень летучие. 646 растворитель, в частности, сделан на основе ацетона. Надписи, шелкография на плате, и паяльная маска, при этом не смываются и не растворяются.

Единственное, демонтировать таким образом микросхему в корпусе Soic-16 и более многовыводную, будет проблематично, из-за сложностей с одновременным прогреванием, большого количества ножек. Всем удачной пайки, и поменьше перегретых микросхем! Специально для Радиосхем – AKV.

Простой способ пайки микросхем

Пайка микросхем паяльным феном

Для начала надо подготовить контактные площадки на печатной плате для будущей пайки, для начала очистим “пяточки” с помощью метода медной оплетки от старого припоя, затем с помощью паяльника их залуживаем, так чтобы на контактных площадках получились небольшие холмики. Затем с помощью спирта и ватной палочки промываем пяточки от нагара и слегка смазываем флюсом

Пайка шаг 1: Устанавливаем микросхему на контактые площадки печатной платы, незабываем проверить правильность установки орентируясь на кружок в углу от которого против часовой стрелки начинается нумерация выводов микросхем.

Пайка микросхем шаг 2: Устанавливаем температуру на фене на 360-370 градусов и начинаем прогревать микросхему ровными круговыми движениями по периметру по часовой или против часовой стрелки. Фен стараемся держать перпендикулярно

Пайка шаг 3: Как только припой расплавится микросхема сама встанет на контактные площадки, некоторые новые микросхемы требуется также залудить флюсом перед пайкой. Вот и все перед первой пайкой микросхем советую потренироваться на какой-нибудь нерабочей плате.

А для закрепления практических навыков можете посмотреть тематическое видео: “Как паять микросхемы горячим воздухом


Пайка микросхем – демонтаж с помощью фена

Довольно часто у радиолюбителей при демонтаже запаянных микросхем в DIP-корпусах появляется вопрос – как постараться не повредить при демонтаже плату и микросхему? Если долго прогревать контакты, то отслаиваются дорожки. Можно, конечно, просто откусить выводы и выпаять их по одному, но микросхему после этого можно только выкинуть, а ведь она может быть еще и рабочей.

Один из эффективных методов демонтажа микросхем показал Clay Cowgill. Он при помощи термовоздушной паяльной станции Hakko 850 ловко водя соплом по краям микросборки и сильно не грея её центральную часть, расплавил припой, и с помощью пинцета вытащил многовыводный радиокомпонент из схемы целиком. После этого он провел термовоздушной струей по освободившемуся месту, и удалил лишний припой, тем самым освободив забитые оловом отверстия, подготавливая плату для будущей пайки. Работу мастера можете заценить в видео инструкции – секреты пайки микросхем:

Пайка микросхем в корпусах DIP в радиолюбительской практике

Пайка DIP микросхем способ 1 – использование оловоотсоса: Практически любой оловоотсос состоит из трубки, на одной стороне которого расположен узкий носик, а на другой находится поршень с кнопкой, спускающей пружину.

Принцип работы оловоотсоса базируется на засасывании внутрь себя расплавленного припоя. Оловоотсос подносим, к расплавленной паяльником поверхности контактной площадки, и нажимаем кнопку. Припой затягивается внутрь. Единственное, что напрягает при такой работе, это то, что придется повторить данный этап с каждым выводом микросхемы.

Если вы решили приобрести оловоотсос, то берите только тот который сделан из металла, пластмассовые прослужат недолго. И не забывайте иногда чистить это приспособление от накопившегося припоя, который там накопился.


Как выпаять микросхему с помощью медицинских иголок – пайка микросхем с DIP корпусом способ второй

При демонтаже вышедших из строя многоштырьковых радио компонентов можно применять достаточно простое приспособление, сделанное из обычной медицинской иголки от капельницы.

Принцип демонтажа становится понятен из схемы выше. Каждый вывод микросхемы отдельно прогревается паяльником и после расплавления припоя на него с небольшим поворотом надевается отрезанная иголка. После того, как припой затвердеет, иголку с прокручиванием вытягивают. Но надо успеть поймать момент, чтобы не успели застыть остатки флюса, а то можно оторвать и сам вывод микросборки.

Каким припоем паять микросхемы?

Каждое современное электронное устройство работает благодаря микросхемам различного размера и сложности. Ни одно изделие не может работать вечно. Микросхемы ремонтируют с помощью пайки. Работа с ними – это достаточно сложное деликатное занятие. Из-за большого количества контактов расположенных максимально близко друг к другу, их пайка требует максимальной аккуратности и осторожности.

Для пайки микросхем не подойдет обычный паяльник, для этого нужно приобретать специализированное оборудование. Также особого внимание требуется выбор расходного присадочного материала. Для того чтобы на максимально возможный уровень облегчить работу требуется использовать припой с относительно низкой температурной отметкой плавления. Огромную роль на итоговый результат пайки оказывает качество расходного материала. Естественно, что его стоимость достаточно высокая, но она вполне оправдывается высоким качеством. Также стоит отметить, что для пайки контактов в микросхемах не требуется большое количество припоя, что позволит использовать одну упаковку вещество достаточно долго.

Существует большое количество разнообразных моделей припоев, которые отличаются друг от друга химическим составов, физическими свойствами и, несомненно, качеством. Это обусловлено их широким спектром использования. Припой для пайки микросхем используется повсеместно как любителями и частными профессионалами, так и на огромных масштабных производствах.

Выбор присадочного материала для работы с микросхемами достаточно сильно отличается от подбора материала для обычной пайки. Здесь в первую очередь требуется обращать внимание не на свойство прочности, а на стойкость к воздействию высоких температур, способность проводить электрический ток и т.д.

Наиболее популярные модели припоев для пайки микросхем

Различных моделей припоев от разнообразных производителей, основное назначения которых заключается в работе с контактами микросхемы, очень много. Можно отдельно выделить пару отечественных моделей популярных в нашем государстве. Одной их таких является припой для микросхем ПОС 61. Его химический состав очень разнообразен и выглядит следующим образом (значения указаны в процентном соотношении):

Такой набор элементов в химическом составе расходного присадочного материала позволяет ему обрести следующие физически свойства и механические характеристики:

  • вещество начинает подвергаться процессу плавления при достижении температурной отметки равной 189 градусов по Цельсию;
  • плотность наплавленного припоя на один квадратный сантиметр равна примерно восьми с половиной граммам;
  • материал способен удлинятся относительно самого себя примерно на 45-47%;
  • ударная вязкость материала равна 3,9 килограмм на один квадратный сантиметр площади наплавленного вещества.

В качестве альтернативы вышеописанному припою можно использовать модель ПОС 30. По общему уровню качества он достаточно сильно уступает предыдущей модели, однако низкая температура плавления позволяет создать комфортные условия для пайки микросхем. Его химический состав состоит всего лишь из двух компонентов (значения в процентном соотношении):

  • Sn – 30;
  • Pb – 70.

Этот несложный состав обеспечивает припою следующие технические характеристики:

  • вещество начинает подвергаться плавлению при достижении температурной отметки в 183 градуса по Цельсию;
  • плотность наплавленного припоя на один кубический метр равняется десяти килограммам;
  • припой способен удлиняться относительно самого себя почти на шестьдесят процентов.

Как выбирать?

Естественно, что не следует ограничиваться двумя вышеописанными моделями. Для каждого конкретного случая может понадобиться использование присадочного материала определенного химического состава для обеспечения нужных физических свойств и механических характеристик. Следует выбирать ту или иную модель припоя исходя из необходимых вам свойств.

В первую очередь нужно обращать внимание на значение проводимости электрического тока. Если сопротивление, которым он обладает, достаточно низкое, то его использование в пайке сложных микросхем будет невозможно. Конечно же, для небольших паяльных работ, выполняемых в домашних условиях, можно использовать самый простой и недорогой вариант. Но если предстоит выполнять масштабные работы, то лучше всего купить припой, в основе химического состава которого лежит серебро.

Также очень важной характеристикой является значение температуры, при достижении которой вещество начинает подвергаться плавлению. Так как рабочая деятельность практически любой микросхемы редко когда происходит при температурах превышающих сотню градусов по Цельсию, то и использовать лучше расходный материал с низкой отметкой плавления.

Стоит уделять внимание форме материала. Лучше всего если он будет реализован в форме трубки или стержня, так как такие формы способны обеспечить максимальный комфорт при работе. С их помощью очень легко взять паяльником минимально требуемое количество вещества.

Особенности проведения паяльных работ с микросхемами

При покупке той или иной модели припоя стоит учитывать, что пайка микросхем имеет некоторые различия относительно работ с изделиями более большого размера. Для работы маленькими контактами нужно использовать небольшой паяльник с острым жалом плоской формы. Рабочая мощность ни в коем случае не должна превышать температурную отметку плавления расходного материала. Для улучшения качества итогового результата работы в обязательном порядке нужно использовать флюс в большом количестве.

Самое главное отличие паяния микросхем от работ с другими изделиями является то, что любая микросхема нуждается в очистке излишков расходного материала после выполнения работ. Это следует выполнять для того, чтобы во время работы микросхемы исключить шанс возникновения возможного короткого замыкания. Этот процесс выполняется с помощью медной оплетки, это также одна из особенностей, которая требует проведения работ при невысоких температурах.

Хороший паяльник для профессиональной пайки микросхем

В электронике применяется много разных видов микросхем. Они отличаются способом исполнения, строением корпуса, максимальными рабочими температурами, количеством ножек, их распиновкой, значениями напряжений и токов, с которыми они работают. Кроме того, есть различия и в способах их посадки на плату.

Инструменты, которые можно использовать для работы с микросхемами, тоже бывают разными. В принципе, какой паяльник лучше выбрать для микросхемы, зависит именно от посадки — сквозная она или планарная. Но совсем не последнюю роль в выборе того, что применять для её демонтажа с платы, играет количество ножек и их размер. В некоторых случаях применяется простой бытовой паяльник, а в некоторых нужен паяльный фен. Разберёмся в этом подробнее.

Паяльники для электротехнических работ

Самое простое и наверняка имеющееся у многих радиолюбителей устройство для проведения ремонтов техники разной сложности или создания собственных уникальных устройств под какие-либо конкретные нужды. Паяльники имеют несколько важных характеристик, ориентирование в которых поможет выбрать то, что подойдёт для выполнения поставленных задач. Это материал, из которого изготовлен нагревательный элемент, и мощность работы. Первый показатель поможет выбрать самое энергоэффективное устройство, позволяющее при минимально поданном напряжении достичь желаемой температуры жала. Второй — предназначен для выбора наиболее подходящего устройства под конкретный спектр задач.

По материалу нагревательного элемента среди паяльников, доступных в продаже, выделяют две группы:

  • Спиральные — очень надёжные и долговечные, жила изготовлена из керамического стержня, на который намотана тугими витками проволока. Таким образом обеспечивается наилучшая сохранность стержня и хорошая передача тепла жалу. Единственный недостаток таких паяльников — их медленный нагрев и такое же неспешное остывание, что может осложнить некоторые технологические процессы, связанные с надобностью сменить жало с тонкого на более толстое и наоборот.
  • Керамические — в основе лежит такой же стержень, но уже не армированный снаружи спиралью. Имеет очень хорошую теплопередачу, вследствие чего разогревается и остывает очень быстро. Недостаток кроется как раз в отсутствии поддерживающей конструкции — из-за частых циклов нагрева и охлаждения стержень может треснуть или даже сломаться. Рекомендуется соблюдать повышенные меры предосторожности с керамическими паяльниками.

По мощности паяльники имеют очень большой разброс, так как применяются они не только в радиотехнических работах, но и в ремонте крупных бытовых приборов и кухонной утвари:

  • До 10 ватт — для работы со сверхчувствительными радиоэлектронными деталями и микропайки. Такая низкая мощность может уберечь от досадных ситуаций вроде повреждения дорожек платы в результате перегрева, порчи элементов цепи и даже неприятных спецэффектов — взрывов конденсаторов или транзисторов. Таким паяльникам вполне достаточно питания в 5−12 вольт, что делает их довольно практичными для домашнего использования, ведь они могут питаться даже от аккумулятора или батареи. Низкая стоимость и маленький компактный размер тоже говорят в пользу их выбора.
  • 10−60 ватт. Самые распространённые из всех, имеют поразительную универсальность и покрывают самый широкий спектр задач, выполняемых на дому. Компактность и возможность работы от розетки делает их оптимальными профессиональными инструментами для покупки.
  • 60−100 ватт — часто встречаются на автосервисах благодаря тому, что способны работать с кабелями, имеющими большую толщину жилы. Конструкция далеко не миниатюрная, могут идти в комплекте с собственным трансформаторным блоком питания. Для решения бытовых задач подходят слабо, так как применяются для ремонта крупногабаритной техники и электрических устройств.
  • От 100 ватт — подходят для ремонта кухонной утвари (кастрюль с повреждённым в результате перегрева дном, например), батарей отопления, труб и других изделий с большой толщиной сечения. Такие паяльники могут иметь собственный инвертор для регулировки мощности и в некоторых случаях требуют наличия дополнительного заземляющего контура.

В общем, зная свои задачи и степень обеспеченности, вы будете знать, как выбрать хороший паяльник.

Как устроен прибор для пайки

В зависимости от типа у паяльника для электроники может быть множество дополнительных деталей, комплектующих и расходных элементов. Само же устройство паяльника довольно простое. Он состоит из таких частей:

  • Стержня, в основном выполненного из меди, так как этот металл обеспечивает достаточно быструю доставку тепла от нагревательного элемента до жала и поддерживает температуру на протяжении всей работы.
  • Жало — рабочий наконечник. Им выполняется работа, плавится припой на плате и подчищаются его остатки после выполнения задачи. В большинстве паяльников жала съёмные и их существует множество разновидностей под конкретные задачи специалиста.
  • Нагревательный элемент — в него вставляется медный стержень, может быть как просто керамическим (или выполнен из слюды), так и со спиралью из нихромовой нити снаружи.
  • Ручка или держатель — инструмент безопасности, выполняется из пластика, не проводит тепло и служит для предотвращения возможных ожогов пальцев.

Другие виды паяльников, например, индукционные, устроены по совершенно другому принципу — с использованием магнитной катушки и ферромагнитного наконечника. Но поскольку нагрев детали происходит при контакте и пропускании токов высокой частоты через деталь, для пайки элементов печатных плат такие устройства не подходят вообще.

Самостоятельное изготовление устройства

Понятно, что изготовить, например, стоваттный или даже более мощный паяльник в домашних условиях сложно. Но вот простой, бытовой инструмент для несложных задач и быстрых ремонтов — вполне реально. Он должен отвечать примерно таким требованиям:

  • Иметь рабочую температуру жала не менее 270−300 градусов Цельсия. Это необходимо для лёгкого расплавления популярных марок припоя. ПОС-61, например, плавится при температуре, близкой к 200 градусам.
  • Обеспечивать стабильный нагрев, чтобы избегать возможных падений температуры из-за большой длины устройства в результате значительных потерь тепла.

Для изготовления простейшего двухваттного паяльника из резистора своими руками необходимо несколько деталей:

  • Сам резистор. Можно использовать марку МЛТ-2 с номиналом до 27 Ом для работы с напряжением 12 вольт или 51 Ом для вдвое большего напряжения.
  • Мощный аккумулятор, выступающий в качестве источника тока для нагревательного элемента.
  • Деревянная пластина, которая будет использоваться в качестве ручки.
  • Два изолированных провода небольшой толщины.

Жалом паяльника в этом случае будет выступать один из выводов резистора.

Резистор необходимо надёжно прикрепить к ручке (с помощью скрученного проводка, например, или посадить на термостойкий клей). Два провода — к выводам резистора с одной стороны и к полюсам аккумулятора с другой. Паяльник маленьких деталей с мощностью в 2−3 ватта готов.

Работа с микросхемами разных типов

Для выпаивания радиоэлектронных компонентов с печатных плат необходимо, кроме паяльника, иметь флюс и припой. Нелишним будет и наличие жидкости, способной растворять флюсы, чтобы использовать её для отмывки плат после работы. Кроме того, необходимо подготовить несколько дополнительных инструментов:

  • Пинцеты с антистатическим покрытием — для съёма деталей планарного типа с платы. Покрытие обеспечивает защиту от выхода микросхемы из строя вследствие прохождения сквозь неё статических токов.
  • Оплётка — косичка из тонкой медной проволоки, позволяющая легко убирать припой с посадочных мест.
  • Отсос для припоя — пригодится для очистки отверстий под ножки детали от затёкшего металла.
  • Микроскоп или лупа — для осмотра посадочного места на предмет выдранных или повреждённых жалом (перебитых) дорожек печатных плат.

Стоит отметить, что микросхемы планарного типа, имеющие ножки по всему своему периметру, выпаиваются из платы с помощью паяльника очень непросто. Для таких деталей — например, звуковых или сетевых контроллеров материнских плат компьютеров, тактовых генераторов или мультиконтроллеров питания лучше применять паяльный фен.

Пайка сквозных микросхем

Здесь всё довольно просто — смазываем флюсом выглядывающие с другой стороны платы ножки детали, разогреваем паяльник, набираем жалом немного припоя и начинаем водить жалом по ним. Сначала по одной стороне, потом по другой. Можно для удаления фиксирующего припоя пользоваться оплёткой или отсосом. Когда микросхема выпаяна, следует осмотреть отверстия под её контакты с помощью лупы или микроскопа на предмет вылетевших гильз, затёкшего внутрь припоя или повреждённого текстолита.

После этого, если обнаружены отверстия, залитые припоем, следует очистить их отсосом. Для этого иногда используют иглу от шприца с зашлифованным остриём, но такой метод нужно применять с осторожностью — можно повредить дорожки и межслойную структуру платы.

За очисткой отверстий следует установка детали обратно — той же, если диагностика показала её работоспособность, или аналога в случае её неисправности. Сделать это намного легче — нужно, соблюдая обозначенное на плате положение ключа (в основном это стрелка в углу или точное изображение детали с обозначенной выемкой) вставить ножки в отверстия и запаять. Для этого паяльник лудится, набирает на жало припой, дотрагивается им до каждой ножки. Силы диффузии и взаимного притяжения молекул расплавленного металла позволяют припою растечься равномерно почти самостоятельно. Если после остывания заметны микротрещины или «канавки», нанесение припоя придётся повторить.

Планарные микросхемы с двумя рядами ножек

Такие детали ещё можно выпаивать паяльником, особенно если выводов с каждой стороны три — четыре. Для этого следует подготовить все упомянутые инструменты и выполнить работу таким образом:

  • Нанести флюс на ножки микросхемы.
  • Разогреть паяльник, зачерпнуть им припой и прогреть ножки с одной стороны детали до смешивания металла.
  • Пинцетом поддеть и приподнять один край микросхемы.
  • Повторить операции с другим краем.

Запаивать назад нужно будет после снятия лишнего припоя с посадочных контактных мест на плате и выравнивания их. Для посадки достаточно припаять точно одну ножку, а потом провести паяльником с обеих сторон.

Безопасность при выполнении работ

Для избежания травм при работе с расплавленными металлами, раскалёнными приборами и токсичными веществами, которые содержатся в припоях, необходимо соблюдать все меры предосторожности. Работы проводить в хлопчатобумажных халатах и защитных очках, не дотрагиваться до рабочей части паяльника и только что прогретых частей плат голыми пальцами, носить антистатические браслеты, помогающие снизить риск вывода из строя ремонтируемой техники разрядом статики.

Чтобы максимально снизить попадание токсичных веществ в лёгкие и кровь, следует работать в помещениях с достаточной вентиляцией и оборудованных мощными вытяжками. При использовании вытяжек следует обеспечить свободный приток свежего воздуха в помещение через открытую дверь или окно.

В случае попадания раскалённого металла на кожу, необходимо немедленно его удалить, а ожог обработать раствором изопропилового спирта или мазью против ожогов. Если припой попал в глаз, потерпевшего как можно быстрее необходимо доставить в больницу.

Как правильно паять паяльником: инструкция для чайников

Искусство пайки нужно постигать постепенно. Начиная от спаивания проводов и переходя к печатным платам — каждый из способов имеет свои тонкости как в подборе расходников для пайки, так и в технике. Сегодня мы поделимся с читателями азами паяльного дела и базовыми навыками работы.

В чём суть пайки

В паяльном деле используется способность одних металлов в расплавленном состоянии эффективно растекаться по поверхности других под действием гравитации и умеренного поверхностного натяжения. Соединение пайкой неразъёмное: две соединяемые детали как бы обволакиваются слоем припоя и остаются неподвижными после его застывания.

Поскольку мы будем рассматривать пайку именно в контексте пайки металлов, то наиболее важными параметрами будут прочность механического и проводимость электрического соединения. В большинстве случаев это прямо пропорциональные величины и если две детали плотно схвачены, то и проводимость между ними тоже будет высокой. Однако припой имеет удельное сопротивление выше, чем даже у алюминия, поэтому его слой должен быть как можно более тонким, а укрывистость — максимально высокой.

Для того чтобы пайка была возможна в принципе, существует два условия. Первое и важнейшее — чистота деталей в месте спайки. Припой присоединяется к поверхности металла на атомном уровне и наличие даже малейшей оксидной плёнки или загрязнений сделает надёжное прилипание невозможным.

Второе условие — температура плавления припоя должна быть значительно ниже температуры спаиваемых деталей. Это кажется очевидным, но существуют припои с температурой плавления выше, чем у алюминия, к примеру. Кроме того, если реальная разница в температурах плавления недостаточно высока, при застывании припоя температурная усадка деталей может помешать нормальному формированию кристаллической решётки припоя.

Флюсы и припои — как правильно подобрать

По описанным выше причинам правильный выбор флюса и припоя — это практически половина успеха в паяльном деле. К счастью, имеются вполне универсальные марки, подходящие для большинства задач. Отрасль применения почти всех флюсов и припоев вполне доходчиво указывается на этикетках, но некоторые аспекты их применения всё же нужно знать.

Начнём с флюсов. Их применяют для протравливания деталей, снятия и растворения оксидной плёнки с дальнейшей защитой металла от коррозии. Пока поверхность покрыта флюсом, можно быть уверенным в её чистоте, как и в том, что расплавленное олово будет хорошо её смачивать и растекаться.

Флюсы различают по типу металлов и сплавов соединяемых деталей. В основном это смеси металлических солей, кислот и щелочей, активно вступающих в реакцию при нагреве паяльником. Ну а поскольку оксидных форм и загрязнений существует достаточно много, коктейль должен специально подбираться под конкретный тип металлов и сплавов.

Активный флюс для пайки

Условно флюсы для пайки делятся на два типа. Активные флюсы создаются на основе неорганических кислот, в основном хлорной и соляной. Недостаток их в необходимости смывки сразу по завершении пайки, иначе остатки кислот вызывают довольно сильное корродирование соединения и сами по себе обладают достаточно высокой проводимостью, способной вызвать замыкание. Зато активными флюсами можно паять практически что угодно.

Второй тип флюсов создаётся, преимущественно, на основе канифоли, которая может использоваться и в чистом виде. Жидкий флюс гораздо удобнее в нанесении, в него также входят спирт и/или глицерин, полностью испаряющиеся при нагреве. Канифольные флюсы наименее эффективны при пайке стали, однако для цветных металлов и сплавов используют преимущественно их или другие соединения органической химии. Канифоль также требует смывки, ибо в долгосрочной перспективе она способствует корродированию и может становиться проводимой, набирая влагу из воздуха.

Жидкая и твёрдая канифоль

С припоями всё несколько проще. В основном для пайки используются свинцово-оловянные припои марки ПОС. Цифра после маркировки означает содержание олова в припое. Чем его больше, тем выше механическая прочность и электропроводность соединения и при этом ниже температура плавления припоя. Свинец используется для нормализации процесса застывания, без него олово может растрескаться или покрыться иглами.

Припой ПОС-61 с канифолью внутри

Существуют специальные типы припоев, прежде всего — бессвинцовые (БП) и прочие нетоксичные, в них свинец заменён индием или цинком. Температура плавления у БП выше, чем у обычных, но соединение прочнее и более устойчиво к коррозии. Есть также легкоплавкие припои, растекающиеся уже при 90–110 ºС. К таким относятся сплавы Вуда и Розе, используют их для пайки компонентов, чувствительных к перегреву. Специальные припои находят главное применение при пайке радиоаппаратуры.

Сплав Розе

Мощность и виды паяльников

Главным отличием паяльного инструмента является тип источника его питания. Для обывателей наиболее знакомы сетевые паяльники, питающиеся от 220 В. Их используют главным образом для пайки проводов и более массивных деталей, ибо перегреть медный провод практически невозможно за исключением, разве что, оплавления изоляции.

Плюс сетевых паяльников в их высокой мощности. За счёт неё обеспечивается качественный и глубокий прогрев детали, плюс не требуется громоздкого блока питания для работы. Из недостатков можно выделить невысокое удобство работы: паяльник довольно тяжёлый, жало расположено далеко от ручки и для тонкой работы такой инструмент не годится.

Паяльные станции используют термоконтроль для поддержания стабильного уровня температуры. Такие паяльники не обладают значительной мощностью, обычно 40 Вт — это уже потолок. Однако для чувствительной к перегреву электроники и пайки мелких деталей этот инструмент подходит наилучшим образом.

Выбор жала и уход за ним

Жала для паяльников различают по форме и материалу. С формой всё просто: самым примитивным и в то же время универсальным является шиловидное жало. Возможны вариации в форме лопаточки, конуса с затуплённым концом, со скосом и прочие. Главная задача при выборе формы — добиться максимальной площади соприкосновения с конкретным типом спаиваемых деталей, чтобы нагрев был мощным и при этом непродолжительным.

Медные жала для паяльника

По материалу почти все жала медные, однако бывают с покрытием и без него. Покрывают медные жала хромом и никелем для увеличения жаростойкости и устранения окисления поверхности меди. Жала с покрытием очень долговечные, но несколько хуже смачиваются припоем и требуют бережного отношения. Для их чистки используют латунную стружку и вискозные губки.

Жала с никелевым покрытием

Жала без покрытия можно по праву отнести к расходникам для пайки. Такое жало при работе периодически покрывается слоем окислов и припой перестаёт к нему прилипать. Рабочую кромку нужно заново зачистить и залудить, поэтому при интенсивном использовании жало стачивается достаточно быстро. Для замедления обгорания жала его рекомендуется предварительно отковать, а затем обточить для придания нужной формы.

Пайка проводов

Провода паять наиболее просто. Концы жил окунаем в раствор флюса и проводим по ним паяльником, жало которого обильно смочено во флюсе. В процессе лужения излишки расплавленного припоя желательно стряхивать. После нанесения полуды из проводов формируют скрутку, а затем тщательно прогревают её с небольшим количеством припоя, заполняя свободное пространство между жилами.

Возможен и иной способ, когда перед скручиванием провода просто тщательно смачивают флюсом и паяют без предварительного лужения. Особенно такой метод популярен при пайке многопроволочных жил и проводков небольшого диаметра. Если флюс качественный, а паяльник обеспечивает достаточно сильный прогрев, даже скрутка из 3–4 «пушистых» жил по 1,5 мм 2 хорошо пропитается оловом и будет надёжно спаяна.

Обратите внимание, что в электромонтаже, то есть внутри распределительных коробок, паять проводку не принято. В первую очередь по причине неразъёмности соединения, плюс ко всему спайка обладает значительным переходным сопротивлением и всегда есть высокий риск её корродирования. Провода паяют исключительно при соединениях внутри электроприборов или для лужения концов многопроволочных жил перед их затяжкой винтовыми клеммами.

Работа с электронными компонентами

Пайка электроники — наиболее обширная и сложная тема, требующая опыта, навыков и специального оборудования. Однако заменить неисправный элемент на печатной плате сможет и дилетант даже при наличии одного лишь сетевого паяльника.

Выводные элементы (которые с ножками) паять проще всего. Они предварительно неподвижно фиксируются (пластилином, воском) выводами в отверстиях платы. Затем с обратной стороны паяльник плотно прижимается к хвосту для его прогрева, после чего в место спайки вводится проволочка припоя, содержащего флюс. Слишком много олова не нужно, достаточно чтобы оно затекло в лунку со всех сторон и образовало некое подобие вытянутого колпака.

Если выводной элемент болтается и его нужно придерживать руками, то место спайки сперва смачивается флюсом. Его нужно очень небольшое количество, здесь оптимально использовать флаконы от лака для ногтей, предварительно промытые ацетоном. Олово при такой технике пайки набирается на паяльник в небольшом количестве и его капелька аккуратно подносится к выводу элемента в 1–2 мм от поверхности платы. По ножке припой стекает, равномерно заполняя лунку, после чего паяльник можно убирать.

Очень важно, чтобы соединяемые детали оставались неподвижными до полного остывания припоя. Даже малейшее нарушение формы олова при кристаллизации приводит к так называемой холодной спайке — дроблению всей массы припоя на множество мелких кристаллов. Характерный признак такого явления — резкое помутнение припоя. Его нужно разогреть заново и дождаться равномерного остывания в полной неподвижности.

Некачественная, холодная пайка

Для поддержания олова в жидком состоянии, достаточно чтобы паяльник контактировал залуженной поверхностью жала с любой точкой увлажнённого участка. Если паяльник буквально прилипает к спаиваемым деталям, это свидетельствует о недостатке мощности для нагрева. Для пайки чувствительных к нагреву полупроводниковых элементов и микросхем обычный припой можно смешивать с легкоплавким.

Пайка массивных деталей

Наконец, кратко расскажем о пайке деталей с высокой теплоёмкостью, таких как кабельные муфты, баки или посуда. Требование к неподвижности соединения здесь наиболее важно, крупные детали предварительно соединяют струбцинами, мелкие — комками пластилина, перед пропайкой соединения его прихватывают точечно в нескольких местах и снимают скрепы.

Паяют массивные детали как обычно — сперва полуда на месте соединения, затем заполнение шва жидким припоем. Однако припой в этих целях используют специальный, обычно тугоплавкий и способный сохранять высокую герметичность, а также хорошо выдерживающий частичный нагрев.

При такой пайке крайне важно поддерживать детали хорошо прогретыми. Для этих целей паяльный шов непосредственно перед местом спаивания подогревают газовой горелкой, а вместо обычного электрического паяльника используют массивный медный топорик. Его также постоянно подогревают в пламени горелки, попутно смачивая припоем, а затем заполняют соединение, частично расплавляя предыдущий шов на несколько миллиметров.

Подобная техника пайки с подогревом может использоваться и при работе обычным паяльником, например, при спайке толстых жил кабеля. Жало в этом случае выступает лишь оперативным инструментом для тщательного распределения олова, а основным источником нагрева служит газовая горелка.

Как правильно паять светодиоды SMD

Монтаж компонентов электронных схем выполняется разными способами. Одним из наиболее распространенных вариантов является пайка, обеспечивающая надежный контакт и прочное крепление деталей к печатной плате.

Она не представляет большой сложности и доступна даже начинающим радиолюбителям. Пайка светодиодов SMD отличается особенностями и правилами. Они призваны сохранить элементы и защитить их от перегрева. Несоблюдение требований приводит к потере светильников, поэтому полезно будет рассмотреть вопрос подробнее.

Основные принципы пайки и распространенные ошибки

Процесс пайки SMD светодиодов состоит в нанесении тонкого слоя припоя (легкоплавкого оловянно-свинцового сплава с различными добавками) одновременно на контакты присоединяемой детали и токоведущих дорожек печатной платы. Используются физические процессы:

  • смачивание металлов расплавом;
  • капиллярное пропитывание мелких зазоров между контактами, обеспечивающее соединение как в механическом, так и в электрическом отношении.

Для того, чтобы паять диоды SMD, необходимо использовать специальный паяльник с малой мощностью и ограничивать время контакта ЛЕД прибора с горячим рабочим органом. Специалисты рекомендуют не превышать 3-5 секунд. Распространенной ошибкой является использование паяльников с тонким жалом. Это снижает эффективность теплопередачи и не позволяет качественно нагреть контакты и дорожки печатной платы.

Опытные люди рекомендуют пользоваться нормальным жалом, сточенным под углом. Большая масса обеспечит быстрый прогрев площадок и расплав припоя, исключая перегрев светодиода. Жидкий припой под действием эффектов смачивания и капиллярного впитывания затекает в мельчайшие зазоры между ножками элемента и дорожкой печатной платы, после чего горячий паяльник убирают в сторону. Припой застывает и создает монолитный участок прочного соединения деталей.

Вторая ошибка, приводящая к выходу светодиода из строя — перегрев. Чрезмерно долгое прикосновение паяльника к ножкам ЛЕД элемента приводит к повышению температуры излучающего кристалла. Если постоянно не контролировать длительность прикосновения жала к детали, избежать чрезмерного нагрева не удастся.

Пайка в заводских условиях

В заводских условиях используются другие технологии пайки, позволяющие одновременно спаять несколько плат. Специальный робот устанавливает необходимые элементы на основание, на рабочую сторону которого методом шелкографии нанесена паяльная паста. Она содержит припой и флюс, при нагреве они переходят в другую фазу и выполняют свои задачи. Флюс обезжиривает контакты и обеспечивает смачивание, а припой под действием капиллярного эффекта затекает в зазоры соединений и обеспечивает прочное соединение SMD элементов.

Процесс происходит в специальной печи, где плата выдерживается определенное время. Длительность контакта и режим нагрева подбираются таким образом, чтобы не вредить SMD светодиодам. Процедура происходит достаточно быстро и обеспечивает пайку элементов в промышленных объемах.

Важно! Повторить такую технологию в домашних условиях не получится, поскольку необходимо обладать полным комплектом оборудования и материалов. Поэтому для любителей важно освоить процесс ручной пайки SMD светодиодов с использованием обычных инструментов и материалов.

Необходимые материалы и инструменты

Для пайки SMD светодиодов потребуются:

  • паяльник, обладающий нужными параметрами;
  • бокорезы, пинцет, ножницы;
  • монтажная игла или тонкое шило;
  • припой и флюс. Подойдет обычная канифоль или специальный жидкий состав, представляющий собой спиртовой раствор. Часто используют таблетку аспирина;
  • тонкая кисточка для нанесения жидкого флюса;
  • лупа на регулируемой подставке (кронштейне), которой пользуются ювелиры;
  • паяльный фен (компонент паяльной станции).

Обойтись без флюса не удастся, так как расплавленный припой без него не смачивает контакты и не оседает на металле. Спиртовый раствор канифоли специалисты не рекомендуют, так как он малоэффективен и оставляет несмываемый белый налет.

Выбор паяльника является важным этапом подготовки. Оптимальный вариант — паяльная станция с функцией регулировки температуры. Однако, подойдет и обычный низковольтный экземпляр с напряжением питания от 12 до 36 В и мощностью 20-30 Вт. Работать со стандартным устройством на 220 В не рекомендуется, так как их жало слишком сильно нагревается. От этого флюс испаряется быстрее, чем надо, не выполняя свою задачу в нужных пределах. Максимальная температура нагрева — 260°.

Большое значение имеет тип наконечника жала. Обычный конусный — не лучший вариант, оптимальным выбором будет т.н. микроволна. Это срезанный примерно под 45° пруток с небольшим углублением, сделанном в осевом направлении. Оно наполняется жидким припоем и позволяет эффективнее наносить материал на площадки SMD светодиода и платы. При необходимости микроволна действует как отсос излишков припоя, что позволяет избежать капель и потеков.

Оптимальный тип припоя — тонкая проволочка с канифолью внутри. Этот вид позволяет успешно паять светодиоды практически любым паяльником.

Как паять SMD компоненты

Монтаж ЛЕД элементов технологически значительно отличается от подключения лампы. Пайка SMD светодиодов требует некоторого опыта и навыков. Если их нет, рекомендуется сначала потренироваться на каких-нибудь ненужных кусочках провода. Это поможет овладеть искусством пайки и позволит сохранить светодиоды в рабочем состоянии. Перед началом работы следует осмотреть поверхность платы. Если она покрыта лаком или слоем силикона, следует освободить от них токоведущие дорожки, к которым будут припаяны светодиоды.

Специфика монтажа SMD светодиодов заключается в отсутствии обычных длинных выводов. Элементы устанавливаются на плату и припаиваются к дорожкам, для чего по бокам корпусов ЛЕД приборов имеются маленькие площадки. Работа требует аккуратности и внимания. Важно помнить об опасности нагрева, максимально сокращая время прикосновения паяльника к SMD деталям. Если нет соответствующего инструмента, на жало обычного паяльника наматывают медный провод толщиной около 1 мм. Один конец этой обмотки служит жалом, температура нагрева которого значительно ниже, чем у основного элемента. Рассмотрим порядок действий детальнее:

Порядок работ

Процесс пайки состоит из следующих операций:

  • удаление перегоревшего светодиода (если это необходимо);
  • зачистка токопроводящих дорожек, нанесение флюса на место пайки;
  • установка нового ЛЕД элемента на место;
  • пайка контактов;
  • очистка места пайки от остатков флюса.

Необходимо постоянно помнить о времени прогрева контактов, максимально сокращая его до приемлемых значений. Готовая пайка должна быть аккуратной, ровной, без наплывов или потеков припоя. Излишки материала можно собирать кусочком плетеного экрана, нагревая припой и прикасаясь к нему пучком проводков.

Как паять при помощи фена

Пайка с помощью фена чем-то напоминает промышленный способ монтажа SMD светодиодов, только вместо печи с нужной температурой используется специальный фен. Процесс производится поэтапно:

  • на поверхность платы наносим специальную термопасту. Не следует полностью покрывать ей основание, достаточно нанести материал только на контактные площадки;
  • устанавливаем светодиод с помощью пинцета;
  • направляем поток горячего воздуха и припаиваем плату к ЛЕД элементу. Для защиты от перегрева рекомендуется прикрыть его металлическим предметом.

При подаче горячего воздуха паста расплавляется, образуя слой флюса и жидкого припоя. Флюс быстро испаряется, оставляя прочную спайку.

Фен удобно использовать для демонтажных работ. Если требуется выпаять сразу много светодиодов (например, для замены перегоревших элементов на линейной подсветке), фен позволит быстро нагреть плату и легко отсоединить даже наклеенные детали.

Пайка ленты покрытой силиконом

Силиконовая защита наносится для исключения контактов ленты с влагой. Для пайки необходимо удалить слой покрытия. Для этого ленту надрезают острым ножом и аккуратно снимают защиту. После этого тщательно зачищают и обезжиривают токоведущие дорожки, наносят флюс и припаивают светодиоды. По окончании работы необходимо вновь нанести на очищенный участок слой прозрачного силикона. Можно использовать обычный сантехнический состав, который застывает около суток (в зависимости от толщины слоя).

Основные выводы

Пайка светодиодов SMD не представляет большой сложности, но требует аккуратности и осторожности. Следует помнить об опасности перегрева элементов, результатом которого будет их выход из строя. Необходимо обеспечить соблюдение условий:

  • использовать маломощный паяльник с температурой нагрева не выше 260°;
  • применять качественный флюс (специалисты рекомендуют специальный состав для пайки алюминия);
  • ограничивать время контакта светодиодов с жалом паяльника.

Помимо этого, надо помнить о соблюдении полярности, следить за состоянием токоведущих дорожек. Свои варианты пайки SMD светодиодов излагайте в комментариях.

Читайте также:  Флюс для пайки эмалированных проводов
Ссылка на основную публикацию
Adblock
detector