Реагирует ли медь с водой - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Реагирует ли медь с водой

Медь в питьевой воде: опасность и способы устранения

Различные соединения меди, а также и сама медь, довольно распространены в окружающей среде, в том числе и в природных водах, которые служат источниками для водопроводной воды, поступающей в наши дома и квартиры.

В большинстве случаев концентрация меди в природных водах не превышает десятой доли мг/л, а вот в водопроводной воде она может быть существенно увеличена. Повышенное содержание меди в питьевой воде , а точнее в водопроводной, можно объяснить вымыванием этого металла из труб и арматуры.

Повышение количества меди в питьевой воде характеризуется неприятным вяжущим привкусом, кроме того она пагубно влияет на состояние человеческого организма. Когда концентрация меди достигает 1,0 мг/л в обязательном порядке требуется проводить очистку питьевой воды с использованием специальных систем водоочистки и водоподготовки.

Сточные воды служат основным источником поступления меди и других небезопасных веществ в природные воды, особенно, если речь идет о стоках химических предприятий или крупных организаций металлургической промышленности. Кроме того, в роли загрязнителя окружающих вод, который насыщает их медью, выступают так называемые альдегидные реагенты, применяемые с целью уничтожения водорослей.

Для того что определить, есть ли медь в питьевой воде , нужно обращать внимание на следующие признаки:

  • Даже в случае низкой концентрации меди жидкость приобретает вяжущий малоприятный вкус;
  • Вода имеет голубоватый оттенок;
  • При регулярном мытье головы водой с повышенным содержанием меди светлые волосы начинают приобретать зеленоватый оттенок;
  • На сантехнических устройствах, произведенных из нержавеющей стали, образуется несмываемый темный налет.

Еще одним доказательством того, что в воде содержится медь, является образование коррозии на медных составляющих элементах водопровода. Правда, стоит отметить, что этот признак не столь очевиден, как предыдущие.

Кроме того, что медь оказывает негативное влияние на водопроводные и сантехнические устройства, не стоит также забывать о том, что повышенное содержание этого металла в жидкости является опасной для человеческого здоровья. Специалисты относят медь к веществам третьего класса опасности, это свидетельствует о том, что концентрация этого метала свыше 1,0 мг/л является предельно допустимой.

В целях предотвращения пищевых отравлений различные предметы, изготовленные из меди, например, кастрюли или чайники, покрывают изнутри специальным защитным слоем, который не позволяет меди растворяться в подогреваемой воде. Хроническая интоксикация меди является губительной для организма, ее причисляют к одной из основных причин серьезных нарушений нервной системы, а также неправильного функционирования печени и почек, более того она может приводить к аллергодерматозам и перфорации носовой перегородки.

Все вышеперечисленное дает право говорить об острой необходимости водоочистки питьевой воды с использованием специально предназначенного оборудования, если содержание в ней меди превышает допустимую норму. Существует несколько распространенных способов, применяемых в случаях, когда есть медь в питьевой воде . Выбор способа, в первую очередь, зависит от количества опасного для здоровья вещества в жидкости. Наиболее часто специалисты рекомендуют использовать обратный осмос для решения проблемы повышенного содержания меди в жидкости.

Очистка питьевой и просто водопроводной воды от меди с использованием метода обратного осмоса воды требует применения блока химической промывки, фильтра тонкой очистки, блока различных фильтрующих модулей, а кроме того необходима система реагентной подготовки. Стоит отметить, что этот метод получил широкое распространение не только благодаря своей высокой эффективности, но также и благодаря своей экономичности, к тому же бытовые обратноосмотические фильтрующие установки отличаются небольшими габаритами и простотой монтажа и использования.

Когда содержание меди в жидкости существенно превышает предельно допустимую норму необходимо применение метода ионного обмена, этот метод не так экономичен, как предыдущий, поскольку требуется больше реагентов, поэтому возрастают и эксплуатационные расходы.

МЕДЬ И ЕЕ СОЕДИНЕНИЯ

УРОК В 11-м ЕСТЕСТВЕННО-НАУЧНОМ КЛАССЕ

Для повышения познавательной активности и самостоятельности учащихся мы используем уроки коллективного изучения материала. На таких уроках каждый ученик (или пара учеников) получает задание, о выполнении которого он должен отчитаться на этом же уроке, причем его отчет фиксируется остальными учениками класса в тетрадях и является элементом содержания учебного материала урока. Каждый ученик вносит свою лепту в изучение темы классом.
В ходе урока меняется режим работы учеников от интраактивного (режим, при котором информационные потоки замкнуты внутри обучаемых, характерен для самостоятельной работы) к интерактивному (режим, при котором информационные потоки двусторонние, т.е. информация идет и от ученика, и к ученику, происходит обмен информацией). Учитель при этом выступает как организатор процесса, корректирует и дополняет информацию, сообщаемую учениками.
Уроки коллективного изучения материала состоят из следующих этапов:
1-й этап – установочный, на котором учитель объясняет цели и программу работы на уроке (до 7 мин);
2-й этап – самостоятельная работа учащихся по инструкции (до 15 мин);
3-й этап – обмен информацией и подведение итогов урока (занимает все оставшееся время).
Урок «Медь и ее соединения» рассчитан на классы с углубленным изучением химии (4 ч химии в неделю), проводится в течение двух академических часов, на уроке актуализируются знания учащихся по следующим темам: «Общие свойства металлов», «Отношение к металлам концентрированной серной кислоты, азотной кислоты», «Качественные реакции на альдегиды и многоатомные спирты», «Окисление предельных одноатомных спиртов оксидом меди(II)», «Комплексные соединения».
Перед уроком учащиеся получают домашнее задание: повторить перечисленные темы. Предварительная подготовка учителя к уроку заключается в составлении инструктивных карточек для учащихся и подготовке наборов для лабораторных опытов.

ХОД УРОКА

Установочный этап

Учитель ставит перед учащимися цель урока: опираясь на имеющиеся знания о свойствах веществ, спрогнозировать, подтвердить практически, обобщить сведения о меди и ее соединениях.
Учащиеся составляют электронную формулу атома меди, выясняют, какие степени окисления может проявлять медь в соединениях, какими свойствами (окислительно-восстановительными, кислотно-основными) будут обладать соединения меди.
В тетрадях учеников появляется таблица.

Свойства меди и ее соединений

МеталлCu2O – основный оксидCuO – основный оксидВосстановительCuOH – неустойчивое основаниеCu(OH)2 – нерастворимое основаниеCuCl – нерастворимая сольCuSO4 – растворимая сольОбладают окислительно-восстановительной двойственностьюОкислители

Этап самостоятельной работы

Для подтверждения и дополнения предположений учащиеся выполняют лабораторные опыты по инструкции и записывают уравнения проведенных реакций.

Инструкции для самостоятельной работы парами

1. Прокалите медную проволоку в пламени. Отметьте, как изменился ее цвет. Горячую прокаленную медную проволоку поместите в этиловый спирт. Обратите внимание на изменение ее цвета. Повторите эти манипуляции 2–3 раза. Проверьте, не изменился ли запах этанола.
Запишите два уравнения реакций, соответствующие проведенным превращениям. Какие свойства меди и ее оксида подтверждаются этими реакциями?

2. К оксиду меди(I) прилейте соляную кислоту.
Что наблюдаете? Запишите уравнения реакций, учитывая, что хлорид меди(I) – нерастворимое соединение. Какие свойства меди(I) подтверждаются этими реакциями?

3. а) В раствор сульфата меди(II) поместите гранулу цинка. Если реакция не идет, нагрейте раствор. б) К оксиду меди(II) прилейте 1 мл серной кислоты и нагрейте.
Что наблюдаете? Запишите уравнения реакций. Какие свойства соединений меди подтверждаются этими реакциями?

4. В раствор сульфата меди(II) поместите полоску универсального индикатора.
Объясните результат. Запишите ионное уравнение гидролиза по I ступени.
К раствору карбоната натрия прилейте раствор сульфата мед(II).
Что наблюдаете? Запишите уравнение реакции совместного гидролиза в молекулярном и ионном видах.

5. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор аммиака.
Какие изменения произошли? Запишите уравнения реакций. Какие свойства соединений меди доказывают проведенные реакции?

6. К сульфату меди(II) прилейте раствор йодида калия.
Что наблюдаете? Составьте уравнение реакции. Какое свойство меди(II) доказывает эта реакция?

7. В пробирку с 1 мл концентрированной азотной кислоты поместите небольшой кусочек медной проволоки. Закройте пробирку пробкой.
Что наблюдаете? (Пробирку отнесите под тягу.) Запишите уравнение реакции.
В другую пробирку налейте соляной кислоты, поместите в нее небольшой кусочек медной проволоки.
Что наблюдаете? Объясните свои наблюдения. Какие свойства меди подтверждаются этими реакциями?

8. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете? Полученный осадок нагрейте. Что произошло? Запишите уравнения реакций. Какие свойства соединений меди подтверждаются этими реакциями?

9. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор глицерина.
Какие изменения произошли? Запишите уравнения реакций. Какие свойства соединений меди доказывают эти реакции?

10. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор глюкозы и нагрейте.
Что получилось? Запишите уравнение реакции, используя для обозначения глюкозы общую формулу альдегидов

.

Какое свойство соединения меди доказывает эта реакция?

11. К сульфату меди(II) прилейте: а) раствор аммиака; б) раствор фосфата натрия.
Что наблюдаете? Запишите уравнения реакций. Какие свойства соединений меди доказывают проведенные реакции?

Этап обмена информацией и подведение итогов

Учитель задает вопрос, касающийся свойств конкретного вещества. Учащиеся, выполнявшие соответствующие опыты, докладывают о проведенном эксперименте и записывают уравнения реакций на доске. Затем учитель и ученики дополняют сведения о химических свойствах вещества, которые невозможно было подтвердить реакциями в условиях школьной лаборатории.

Читайте также:  Как восстановить медную монету

Порядок обсуждения химических свойств соединений меди

1. Как медь реагирует с кислотами, с какими еще веществами может реагировать медь?

Записываются уравнения реакций меди с:

• концентрированной и разбавленной азотной кислотой:

• концентрированной серной кислотой:

• соляной кислотой в присутствии кислорода:

2. Какие свойства проявляют оксид и хлорид меди(I)?

Обращается внимание на осно’вные свойства, способность к комплексообразованию, окислительно-восстановительную двойственность. Записываются уравнения реакций оксида меди(I) с:

• соляной кислотой до образования CuCl:

• реакций восстановления и окисления Cu2O:

• диспропорционирования при нагревании:

3. Какие свойства проявляет оксид меди(II)?

Обращается внимание на осно’вные и окислительные свойства. Записываются уравнения реакций оксида меди(II) с:

CuO + 2H + = Cu 2+ + H2O;

4. Какие свойства проявляет гидроксид меди(II)?

Обращается внимание на окислительные, осно’вные свойства, способность к комплексообразованию с органическими и неорганическими соединениями. Записываются уравнения реакций с:

• уравнение реакции разложения:

5. Какие свойства проявляют соли меди(II)?

Обращается внимание на реакции ионного обмена, гидролиза, окислительные свойства, комплексообразование. Записываются уравнения реакций сульфата меди с:

3Cu 2+ + 2= Cu3(PO4)2;

Cu 2+ + Zn = Cu + Zn 2+ ;

и уравнения реакций:

Cu 2+ + HOH = CuOH + + H + ;

• совместного гидролиза с карбонатом натрия с образованием малахита:

2Cu 2+ + 2 + H2O = (CuOH)2CO3 + CO2.

В дополнение можно рассказать учащимся о взаимодействии оксида и гидроксида меди(II) с щелочами, что доказывает их амфотерность:

Подводится итог: с повышением степени окисления возрастают окислительные свойства соединений меди. Ионы меди способны к комплексообразованию. У соединений меди проявляются осно’вные свойства, хотя оксид и гидроксид меди(II) в жестких условиях могут реагировать с щелочами, проявляя слабую амфотерность.

Оставшееся время урока можно потратить на выполнение упражнений и решение расчетных задач.

Упражнение 1. Осуществите цепочку превращений:

Cu CuCl2 Cu(OH)2 CuO CuSO4 Cu(NO3)2 CuO Cu.

Упражнение 2. Предложите не менее восьми способов получения хлорида меди(II).

Упражнение 3. Составьте цепочки превращений, соответствующие следующим схемам, и осуществите их:

Задача 1. Сплав меди с алюминием обработали сначала избытком щелочи, а затем избытком разбавленной азотной кислоты. Вычислите массовые доли металлов в сплаве, если известно, что объемы газов, выделившихся в обеих реакциях (при одинаковых условиях), равны между собой
[1, с. 237, № 1464].

(Ответ. Массовая доля меди – 84%.)

Задача 2. При прокаливании 6,05 г кристаллогидрата нитрата меди(II) получено 2 г остатка. Определите формулу исходной соли [2, с. 204, № 836].

Задача 3. Медную пластинку массой 13,2 г опустили в 300 г раствора нитрата железа(III) с массовой долей соли 0,112. Когда ее вынули, оказалось, что массовая доля нитрата железа(III) стала равной массовой доле образовавшейся соли меди(II). Определите массу пластинки после того, как ее вынули из раствора [2, с. 204, № 841].

(Ответ. 10 г.)

Домашнее задание. Выучить материал, записанный в тетради. Составить цепочку превращений по соединениям меди, содержащую не менее десяти реакций, и осуществить ее.

ЛИТЕРАТУРА

1. Пузаков С.А., Попков В.А. Пособие по химии для поступающих в вузы. Программы. Вопросы, упражнения, задачи. Образцы экзаменационных билетов. М.: Высшая школа, 1999, 575 с.
2. Кузьменко Н.Е., Еремин В.В. 2000 задач и упражнений по химии. Для школьников и абитуриентов. М.: 1-я Федеративная книготорговая компания, 1998, 512 с.

Оксид меди 2, химическая формула и свойства

Оксиды — широко распространённый в природе тип соединений, который можно наблюдать даже в повседневной жизни, в быту. Примером могут служить песок, вода, ржавчина, известь, углекислый газ, ряд природных красителей. Руда многих ценных металлов по своей природе является оксидом, вследствие чего представляет большой интерес для научных и производственных исследований.

Соединение химических элементов с кислородом называют оксидами. Как правило, образуются они при накаливании каких-либо веществ на воздухе. Различают кислотные и основные оксиды. Металлы образуют основные оксиды, в то время как неметаллы — кислотные. За исключением оксидов хрома и марганца, которые также являются кислотными. В данной статье рассматривается представитель основных оксидов — CuO (II).

CuO (II)

Медь, нагреваясь на воздухе при температуре 400–500 °C, постепенно покрывается налётом чёрного цвета, который химики называют оксид двухвалентной меди, или CuO(II). Описанное явление представлено в следующем уравнении:

2 Cu + О 2 → 2 CuO

Термин «двухвалентный» указывает на способность атома вступать в реакцию взаимодействия с другими элементами посредством двух химических связей.

Читайте также:  Сварка меди в домашних условиях угольным электродом

Интересный факт! Медь, находясь в различных соединениях, может быть с разной валентностью и другим цветом. Например: оксиды меди имеют ярко-красную (Cu2O) и коричнево-чёрную (CuO) окраску. А гидроксиды меди приобретают жёлтый (CuOH) и синий (Cu(OH)2) цвета. Классический пример явления, когда количество переходит в качество.

Cu2O ещё иногда называют закись, оксид меди (I), а CuO — окись, оксид меди (II). Существует также оксид меди (III) — Cu2O3.

В геологии оксид двухвалентной (или бивалентной) меди принято называть тенорит, другое его название — мелаконит. Название тенорит произошло от фамилии выдающегося итальянского профессора ботаники Michele Tenore, (1780—1861). Мелаконит считается синонимом названия тенорит и переводится на русский язык, как медная чернь либо чёрная медная руда. В том или ином случае речь идёт о кристаллическом минерале коричнево-чёрного цвета, разлагающемся при прокаливании и плавящемся только при избыточном давлении кислорода, в воде нерастворимом, и не реагирующем с ней.

Акцентируем основные параметры названного минерала.

Химическая формула: CuO

Молекула его состоит из атома Cu с молекулярной массой 64 а. е. м. и атома O, молекулярная масса 16 а. е. м., где а. е. м. — атомная единица массы, она же дальтон, 1 а. е. м. = 1,660 540 2(10) × 10 −27 кг = 1,660 540 2(10) × 10 –24 г. Соответственно молекулярная масса соединения равняется: 64 + 16 = 80 а. е. м.

Кристаллическая решётка: моноклинная сингония. Что обозначает такой тип осей симметрии кристалла, когда две оси пересекаются под косым углом и имеют различную длину, а третья ось расположена по отношению к ним под углом 90°.

Плотность – 6,51 г/см 3 . Для сопоставления, плотность чистого золота равна 19,32 г/см³, а плотность поваренной соли составляет 2,16 г /см 3 .

Плавится при температуре 1447 °C, под давлением кислорода.

Разлагается при накаливании до 1100 °C и преобразуется в оксид меди (I):

4CuO = 2Cu2O + O 2.

С водой не реагирует и не растворяется в ней.

Зато вступает в реакцию с водным раствором аммиака, с образованием гидроксида тетраамминмеди (II): CuO + 4NH3 + H2O = [Cu (NH3)4](OH) 2.

В кислотной среде образует сульфат и воду: CuO + H2SO4 = CuSO4 + H2O.

Реагируя со щёлочью, создаёт купрат: CuO + 2 NaOH → Na2CuO2 + H2O.

Реакция CuO NaOH

Образуется:

  • путём прокаливания гидроксида меди (II) при температуре 200 °C: Cu(OH)2 = CuO + H2O;
  • при окислении металлической меди на воздухе при температуре 400–500 °C: 2Cu + O2 = 2CuO;
  • при высокотемпературной обработке малахита: (CuOH)₂CO₃ —> 2CuO + CO₂ + H₂O.

Восстанавливается до металлической меди –

  • в реакции с водородом: CuO + H2 = Cu + H2O;
  • с угарным газом (монооксид углерода): CuO + CO = Cu + CO2;
  • с активным металлом: CuO + Mg = Cu + MgO.

Токсичен. По степени неблагоприятного воздействия на человеческий организм причисляется к веществам второго класса опасности. Вызывает раздражение слизистых оболочек глаз, кожных покровов, дыхательных путей и желудочно-кишечной системы. При взаимодействии с ним обязательно использование таких средств защиты, как резиновые перчатки, респираторы, защитные очки, спецодежду.

Вещество взрывоопасно и легко воспламеняется.

Применяется в промышленности, как минеральная составляющая комбикормов, в пиротехнике, при получении катализаторов химических реакций, как красящий пигмент для стекла, эмалей, керамики.

Окислительные свойства оксида меди (II) наиболее часто применяются в лабораторных исследованиях, когда необходим элементарный анализ, связанный с изучением органических материалов на предмет наличия в них водорода и углерода.

Немаловажно, что CuO (II) достаточно широко распространён в природе, как минерал тенерит, другими словами — это природное соединение руды, из которого можно получить медь.

Латинское наименование Cuprum и соответствующий ему символ Cu происходит от названия острова Кипр. Именно оттуда, через Средиземное море вывозили этот ценный металл древние римляне и греки.

Медь входит в число семи наиболее распространённых в мире металлов и состоит на службе у человека с древних времён. Однако в первозданном, металлическом состоянии встречается довольно редко. Это мягкий, легко поддающийся обработке металл, отличающийся высокой плотностью, очень качественный проводник тока и тепла. По электрической проводимости уступает только серебру, в то время как является более дешёвым материалом. Широко используется в виде проволоки и тонкого листового проката.

Химические соединения меди отличаются повышенной биологической активностью. В животных и растительных организмах они участвуют в процессах синтеза хлорофилла, поэтому считаются очень ценным компонентом в составе минеральных удобрений.

Необходима медь и в рационе человека. Недостаток её в организме может привести к различным заболеваниям крови.

Видео

Из видео вы узнаете, что такое оксид меди.

Реагирует ли медь с водой

Реферат: Физико-химические свойства меди и применение его и его сплавов

Закрытое Акционерное Общество

Национальная Академия Авиации

Студент: Вагаблы Эмиль

Руководитель: Мамедова Севда

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь— это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Медь образует кубическую гранецентрированную решётку.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55,5-58 МСм/м[4]). Имеет два стабильных изотопа — 63 Cu и 65 Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64 Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например: . Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей: .

Qобразования (CuCl) = 134300 кДж

Qобразования (CuCl2 ) = 111700 кДж

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2 .. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.

Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например: . Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди . Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2 CO3 или нитрата меди (II) Cu(NO3 )2 . При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.

Под слоем меди расположен окисел розового цвета – закись меди Cu2 O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков: .

Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0 C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте: .

Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:

Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета: . Это нестойкое соединение, которое легко окисляется до гидроксида меди (II): .

Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей: , .

Таким образом, гидроксид меди (II) может диссоциировать и как основание: и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30-40 кгс/мм 2 у сплавов и 25-29 кгс/мм^2 у технически чистой меди.

Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм 2 ниже, чем у стали).

Основное преимущество медных сплавов – низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.

Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов и ферментов. При отсутствии или недостатке меди в растительных тканях уменьшается содержание хлорофилла, листья желтеют, растение перестает плодоносить и может погибнуть. Чаще всего медь вносят в почву в виде пятиводного сульфата – медного купороса CuSO4 *5H2 O. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. Польские ученые установили, что в тех водоемах, где присутствует медь, карпы отличаются крупными габаритами. В прудах и озерах, где нет меди, быстро развивается грибок, который поражает карпов. В малых же дозах медь совершенно необходима всему живому.

Из представителей живого мира небольшие количества меди содержат осьминоги, каракатицы, устрицы и некоторые другие моллюски. В крови ракообразных и головоногих, медь входящая в состав их дыхательного пигмента – гемоциана (0,33-0,38%), – играет ту же роль, что железо в крови других животных. Соединяясь с кислородом воздуха, гемоцианин синеет (поэтому у улиток кровь голубая), а отдавая кислород тканям, – обесцвечивается. У животных, стоящих на более высокой ступени развития, и у человека медь содержится главным образом в печени. Ежедневная потребность человеческого организма – примерно 0,005 грамма этого элемента. При недостаточном поступлении меди с пищей у человека развивается малокровие, появляется слабость.

С биологическими процессами связан и один из способов добычи меди. Еще в начале XX века в Америке были зарыты медные рудники в штате Юта: решив, что запасы руды уже исчерпаны, хозяева рудников затопили их водой. Когда спустя два года воду откачали, в ней оказалось 12 тысяч тонн меди. Подобный случай произошел и в Мексике, где из заброшенных рудников, на который махнули рукой, только за один год было “вычерпано” 10 тысяч тонн меди. Оказалось, что среди многочисленных видов бактерий есть и такие, для которых любимым лакомством служат сернистые соединения некоторых металлов. Поскольку медь в природе связана именно с серой, эти микробы неравнодушны к медным рудам. Окисляя нерастворимые в воде сульфиды, микробы превращают их в легко растворимые соединения, причем процесс этот протекает очень быстро. Так при обычном окислении за 24 дня из халькопирита выщелачивается 5% меди, то в опытах с участием бактерий за 4 дня удалось извлечь 80% этого элемента.

Ссылка на основную публикацию
Adblock
detector
Название: Физико-химические свойства меди и применение его и его сплавов
Раздел: Рефераты по химии
Тип: реферат Добавлен 14:55:30 29 сентября 2011 Похожие работы
Просмотров: 469 Комментариев: 2 Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно Скачать