Изготовление импульсного трансформатора своими руками - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Изготовление импульсного трансформатора своими руками

Расчёт и изготовление трансформатора для импульсного блока питания
на тороидальном (кольцевом) ферритовом сердечнике. Онлайн калькулятор обмоток.

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один – массогабаритные показатели. Всё остальное – сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное – при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание “что-то подправить в консерватории”. Объясняется это желание просто – существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней – просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных – EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Мощность блока
питания, Вт
Размеры кольца, мм ;
(габаритная мощность, Вт)
Количество витков
первичной обмотки
Индуктивность
обмотки, мГн
25R 20×12×6 2000НМ (33,8 Вт)
R 22,1×13,7×6,35 №87 (51,5 Вт)

50R 22,1×13,7×12,5 №87 (100,1 Вт)
R 22,1×13,7×7,9 №87 (63,9 Вт)
R 27×18×6 2000НМ (85,3 Вт)

100R 28×16×9 2000НМ (136 Вт)
R 32,0×20,0×6,0 №27 (141 Вт)

200R 28×16×18 2000НМ (268 Вт)
R 29,5×19,0×14,9 №87 (297 Вт)
R 30,5×20,0×12,5 №87 (265 Вт)
R 34,0×20,5×10,0 №87 (294 Вт)
R 34,0×20,5×12,5 №87 (371 Вт)
R 38×24×7 2000НМ (278 Вт)

400R 36,0×23,0×15,0 №87 (552 Вт)
R 38×24×14 2000НМ (565 Вт)
R 40×25×11 2000НМ (500 Вт)

800R 40×25×22 2000НМ (998 Вт)
R 45×28×16 2000НМ (1036 Вт)
R 45×28×24 2000НМ (1580 Вт)

1500R 50,0×30,0×20,0 №87 (1907 Вт)
R 58,3×32,0×18,0 №87 (2570 Вт)

Как следует мотать первичную обмотку трансформатора?


Рис. 2 а) б) в) г) д)

Если используются кольца 2000НМ отечественного производителя, то для начала – посредством наждачной бумаги скругляем наружные острые грани до состояния, приведённого на Рис.2 а).

Далее на кольцо следует намотать термостойкую изоляционную прокладку (Рис.2 б). В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, или сантехническую фторопластовую ленту.

Для буржуйских колец фирмы EPCOS первые два пункта практической ценности не имеют.

Настало время намотать однослойную обмотку «виток к витку» (Рис.2 в). Обмотка должна быть равномерно распределена по периметру магнитопровода – это важно!

Если в закромах радиолюбительского хозяйства не завалялся обмоточный провод необходимого диаметра, то обмотку можно намотать сразу в два, или несколько проводов меньшего диаметра (Рис.2 г). Не забываем, что зависимость тока от диаметра квадратичная и если, к примеру, нам надо заменить провод диаметром 1мм, то это будет не два провода по 0,5мм, а четыре (или два провода по 0,7мм).

Ну и для завершения первичного процесса поверх первичной обмотки трансформатора наматываем межобмоточную прокладку – пару слоёв лакоткани или другой изолирующей ленты (Рис.2 д).

А вот теперь мы плавно переходим к выполнению второй части упражнения.
Казалось бы, расчёты количества витков вторичной обмотки импульсного трансформатора настолько банальны и очевидны, что, как говаривал товарищ Мамин-Сибиряк – «яйца выеденного не стоят».
Да только вот опять – не складываются куличики в пирамидку, потому как далеко не каждый источник информации радует ожидаемым результатом. Поэтому для начала приведём формулу зависимости выходного напряжения от соотношения количества витков обмоток:
W1 (Uвх – Uдм1)/2 – Uнас ,
W2 (Uвых+Uдм2)

где Uвх – значение выпрямленного напряжения сети, равное 1,41×220≈310В,
Uдм1 – падение напряжения на входном диодном мосте ≈ 1В,
Uдм2 – падение напряжения на выходном диодном мосте ≈ 1В,
Uнас – напряжение насыщения на ключевом транзисторе ≈ 1,6В.
Подставив значения, получаем конечную формулу W2 = W1×(Uвых+1)/153.
Это формула верна для случаев, когда мы хотим получить расчётное значение выходного напряжения на холостом ходу.
Если же данный параметр нас интересует при максимальном токе нагрузки, то практика показывает, что количество витков вторичной обмотки следует увеличить на 10%.

Теперь, что касается диаметра провода вторичной обмотки трансформатора. Диаметр этот достаточно просто вычисляется по формуле:
D = 1,13× I / J ,
где I – ток обмотки, а J – параметр плотности тока, напрямую зависящий от мощности трансформатора и принимающий для кольцевых сердечников значения:
≈4,5 для мощностей до 50Вт; ≈4 для 50-150Вт; ≈3,25 для 150-300Вт и ≈2,75 для 300-1000Вт.

И в завершении приведу незамысловатый калькулятор для расчёта параметров вторичной обмотки импульсного трансформатора.

Точно так же, как и в случае с первичной обмоткой – вторичная должна быть как можно более равномерно распределена по периметру магнитопровода.

Количество вторичных обмоток ограничено только размерами магнитопровода. При этом суммарная величина снимаемых с обмоток мощностей не должна превышать расчётную мощность трансформатора.

При необходимости поиметь двуполярный источник питания, обе обмотки следует мотать одновременно, затем присовокупить начало одной обмотки к концу другой, а уже потом направить это соединение, в зависимости от личных пристрастий – к земле, средней точке, общей шине, корпусу, или совсем на худой конец – к GND-у.

Ну что ж, с трансформатором определились, пора озадачиться полным джентльменским набором настоящего мужчины – плавками с меховым гульфиком, а главное, непосредственно импульсным блоком питания, оснащённым такими значимыми прибамбасами, как устройства мягкого пуска и защиты от токовых перегрузок и КЗ.
Всё это хозяйство подробно опишем на странице Ссылка на страницу.

Изготовление импульсного трансформатора своими руками

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

  • Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  • Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  • Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  • Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.
    фторопластовая пленка

    Изоляцию нужно наматывать так, чтобы она была от самого низа, немного с запасом, и до самого верха, так же с запасом.

    Небольшой запас делается для того, чтобы полностью исключить возможность соскальзывания вторичной обмотки, которая будет поверх изоляции, на первичную, так как это очень опасно (чревато замыканием обмоток и тем, что напряжение с первичной обмотки попадёт во вторичную цепь).

    Далее наматываем вторичную обмотку импульсного трансформатора

    Зачищаем и припаиваем один конец провода к восьмой ножке трансформатора. Это будет начало обмотки. Наматываем провод виток к витку снизу вверх, в направлении, указанном на рисунке вверху.

    Когда первый слой заполнится, начинаем наматывать второй слой, также виток к витку, но уже сверху вниз.

    Последний слой нужно равномерно распределить по всей высоте сердечника.

    Оставшийся конец провода зачищаем и припаиваем к пятой ножке.

    И, наконец, поверх вторичной обмотки снова наматываем несколько слоев изоляции.

    Вот и все, трансформатор — готов.

    При намотке нужно избегать образования перегибов или узелков на проводе, так как изоляция в таком месте будет хуже, что чревато межвитковым замыканием.

    Для намотки не рекомендуется использовать провод толще AWG26 (0,4 мм) из-за возникновения скин-эффекта (протекание высокочастотных токов не по всему объему проводника, а только по поверхностному слою).

    Если при расчете у вас получилось, что нужен провод толще 0,4 мм, то нужно использовать намотку двойным или тройным проводом 0,4 мм.

    Как намотать импульсный трансформатор на тороидальный сердечник

    При помощи наждачной бумаги стачиваем острые грани.

    лента изоляционная

    Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.

    ФУМ лента для сантехники

    Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

    Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.

    Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

    При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.

    Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

    Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца.

    Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

    Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки. выводы из многожильного провода

    Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

    Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.

    Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.

    Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли или клея.

    Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).

    отрезки полихлорвиниловой или другой трубки (кембрика)

    Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

    киперная лента

    Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.

    вторичная обмотка, намотанная в четыре провода.

    Намотка Импульсного Трансформатора Своими Руками

    Как правильно намотать импульсный трансформатор? Обучение.

    Ссылки на материал из видео Программы старичка: Блок на SG3525: .

    Намотка и расчет трансформатора. ПОДРОБНО!

    Приложение для расчета трансформатора rus Наша группа .

    Как намотать импульсный трансформатор своими руками? БП на IR2153. (PCBWay)

    Дешевый производитель печатных плат из Китая PCBWay Новый участник получает бонус в 5$ Изготов.

    КАК РАЗОБРАТЬ НАМОТАТЬ ИМПУЛЬСНЫЙ ТРАНСФОРМАТОР Перемотка трансформатора БЛОК ПИТАНИЯ своими руками

    КАК РАЗОБРАТЬ НАМОТАТЬ ИМПУЛЬСНЫЙ ТРАНСФОРМАТОР Перемотка трансформатора БЛОК ПИТАНИЯ своими руками.

    Импульсный трансформатор своими руками.

    В этом видео я не совсем верно намотал трансформатор. Здесь я его переделал Здесь я подробно.

    НАМОТКА ИМПУЛЬСНОГО ТРАНСФОРМАТОРА

    В видео показан процесс намотки импульсного трансформатора.

    Намотка импульсного (тороидного) трансформатора

    Намотка импульсного трансформатора

    В данном видео подробно показана разборка и перемотка импульсного трансформатора от ATX (компьютерного.

    Трансформатор намотка. Полный цикл намотки импульсных трансформаторов для блока питания.

    Намотка импульсных трансформаторов для блока питания. Для данного варианта импульсника используется самы.

    перемотка импульсного трансформатора

    показан процесс разборки трансформатора от компьютерного бока питания , с последующей намоткой трансформа.

    Импульсный блок питания своими руками

    Добрый день! Сегодня соберем обратноходовый импульсный блок питания своими руками на микросхеме UC3842. Вы.

    урок по намотке трансформатора

    намотка трансформатора для ПН

    помощь развитию новых проектов : webmoney Z521347817901 U450093973462 перемотка трансформатора для преобразователя напряже.

    как перемотать, умощьнить импульсный трансформатор для бп ч.4

    В этом видео расскажу, как перемотать импульсный трансформатор для блока питания. Без перемотки транса.

    Импульсный трансформатор своими руками.

    Здесь я подробно покажу как намотать импульсный трансформатор на кольце. Прошу учесть фум-лента не самый.

    Импульсный трансформатор – Как намотать трансформатор

    Как намотать трансформатор своими руками. Процесс намотки импульсного трансформатора для блока питания.

    Простой импульсный блок питания своими руками

    Приветствую вас на канале! В этом видео будем подробно разбирать, а точнее собирать импульсный блок питания.

    Сколько витков мотать на сердечник.

    Разумеется, что намотка трансформаторов подразумевает некоторую неточность в количестве витков, однако.

    Ремонт импульсного трансформатора

    Приветствую вас на канале! По просьбе обратившегося человека показываю ремонт импульсного трансформатора.

    Намотка тороидальных трансформаторов

    Видеокурс “Антенны” Комплекс уроков “Электричество” Мини-курс “Сборка повышающих.

    Определение количества витков первичной обмотки импульсного трансформатора

    Реальная съемка проверки количества витков для импульсного трансформатора. Сопротивление шунта 0,5 Ома.

    Как правильно перемотать ATX трансформатор

    Самое качественное и дешевое изготовление печатных плат на В качестве бонуса, всем новым клиен.

    Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

    Самодельный трансформатор своими руками. Высокочастотный, Импульсный; видео демонстрация. (Ферритовый.

    Перемотка трансформатора однотактного блока питания

    Знакомый попросил перемотать трансформатор с импульсного блока питания управления сварочного аппарата.

    Импульсный трансформатор своими руками. Обратноходовые ИП

    Импульсный трансформатор своими руками. Обратноходовые ИП . Сделать своими руками обратноходовый источник.

    Трансформатор для импульсного блока питания подписчику.

    Трансформатор изготовлен для применения в составе импульсного источника питания, напрямую в сеть его вклю.

    Что будет,если заменить импульсный трансформатор на обычный и наоборот

    Проверка работы двух одинаковых трансформаторов на сердечнике из феррита и трансформаторной стали,с сигна.

    КАК НАМОТАТЬ ТОРОИДАЛЬНЫЙ ТРАНСФОРМАТОР СВОИМИ РУКАМИ

    КАК НАМОТАТЬ ТОРОИДАЛЬНЫЙ ТРАНСФОРМАТОР СВОИМИ РУКАМИ Программы для расчета трансформатора .

    Импульсный блок питания на IR2153. Часть 2 – расчет трансформатора и первое включение

    Вторая из трех частей. В этом видеоролике вы узнаете как рассчитать импульсный трансформатор, как выбрать.

    Намотка трансформатора на ферритовом сердечнике DIY

    Привет всем! в этом видео я расскажу о том, как намотать простой повышающий трансформатор на ферритовом.

    Простой импульсный блок питания своими руками

    Скачать архив Мой второй канал .

    преобразователь напряжения (намотка ТОРа)

    показан процесс намотки трансформатора для преобразователя напряжения , на кольцевом магнитопроводе.

    Намоточный станок тороидальных трансформаторов своими руками (часть 3 )

    Изготовление станка в домашних условиях.

    Импульсный блок питания своими руками ч.3

    Описание самостоятельного изготовления импульсного блока питания на базе IR2153 или IR2155. В этой части описана.

    Миниатюрный блок питания, намотка выходного трансформатора

    Прошу прощения за качество и монтаж данного видео, видеокамера приказала долго жить, постоянно прекращает.

    Импульсный блок питания (трансформатор/дроссель)

    Наши сайты Группа VK E-mail [email protected] Мой профиль VK .

    Способ намотки на ТОРЫ , дающий 100% гарантию качеству!

    На этом видео показываю способ намотки на торы, дающий сто процентов гарантии качеству таких трансформато.

    Намотка Трансформатора для Обратноходового Преобразователя. Transformer for flyback converter

    В этом видео я расскажу вам как намотать трансформатор или дроссель для обратноходового высоковольтного.

    Намотка тороидального трансформатора. Нифига не сложно!

    Данный видосик посвящен вопросу намотки тороидального трансформатора своими руками. Если вас интересует.

    Намотка Трансформатора ИИП

    программа для расчета- .

    Намотка трансформатора медной лентой.

    Мой второй канал Мой Instagram Наши группы .

    Намотка трансформатора обратнохода

    Определение числа витков, мощности, импульсного трансформатора сетевого обратноходового преобразователя.

    Намотка силового импульсного трансформатора ленточным жгутом.

    Перед тем как собирать сварочник решил потренироваться и собрать пуско зарядное устройство по той же схемо.

    Намотка трансформатора обратноходового преобразователя

    Намоткатрансформатора #ТрансформаторОбратнохода #DigitalCAT-electronics В видео обзоре показаны этапы сборки и.

    Намотка тора на ободе

    Пример расчета трансформатора в ПО

    Расчет намотки трансформатора для импульсного источника питания. Программы для расчета: .

    Мотаем импульсный трансформатор со средней точкой

    Как намотать импульсный трансформатор со средней точкой.

    Станок для намотки трансформаторов своими руками

    Заходите на мой сайт

    Намотка высоковольтного трансформатора

    Музыка: Moving Over – Silent Partner.

    ИИП на IR2161 для УМЗЧ, намотка трансформатора.

    Намотка трансформатора для импульсного блока питания на IR2161 Моя группа в ВК группа [NemO] .

    MORGENSHTERN & Элджей – Cadillac (СЛИВ ТРЕКА, 2020)

    Подробности ДТП с актером Михаилом Ефремовым в Москве

    Смертельная авария. Михаилу Ефремову грозит 12 лет тюрьмы. Все подробности

    ЭВЕЛОН СМОТРИТ: MORGENSHTERN & Элджей – Cadillac (СЛИВ ТРЕКА, 2020)

    MORGENSHTERN Feat. Элджей – Кадиллак Реакция на Моргенштерн Элджей Кадиллак

    ТАРАСОВЫ ПРОТИВ РЕГБИСТА И ПУЛЕМЕТЧИКА (БИТВА ЗА ХАЙП, МУЛЬТ БОЙ)

    Первые слова Ефремова после ДТП

    ГУСЕЙН ГАСАНОВ – ПРОСТОЙ ОЛИГАРХ ИЗ НАРОДА

    Полный контакт / Соловьёв LIVE / 9 июня 2020 года

    Самолёт из Жигулей – Первый запуск !

    #1 Drunk Kitchen – АЛЕКСЕЙ ЖИДКОВСКИЙ / Сливочная паста с креветками

    ZO’RLAGAN BOLLAR OZODLIKDA KAMERADA XAMMASI BOR

    ПОДПИСЧИК ПРОНИК В МОЙ ДОМ И ПРОСИЛ ДЕНЬГИ! РЕАЛЬНАЯ ИСТОРИЯ + ВИДЕО С КАМЕР!

    Красный и опасный Nissan 370 Z

    ВЫБЕРИ ПРАВИЛЬНУЮ ВЕРЕВКУ ЧЕЛЛЕНДЖ !

    Смотрите новые, популярные видеоролики онлайн в хорошем качестве. Быстрый поиск любого видео.

    [email protected] Наша почта для жалоб и предложений

    Лабораторный блок питания своими руками

    Сегодня вы узнаете как собрать надёжный лабораторный блок питания с регулировкой тока и напряжения. Использоваться будут готовые компоненты и модули, поэтому, если следовать схеме и инструкции, сложностей в сборке возникнуть не должно. Основным компонентом в схеме, будет модуль DC-DC преобразователя, который можно приобрести на Алиэкспресс, все ссылки будут в конце статьи.

    Основные характеристики DC-DC преобразователя:

    – Входное напряжение 5 — 40 Вольт;

    – Выходное напряжение 1.2 — 35 Вольт;

    – Выходной ток (мах) 9 Ампер, желательно установить кулер.

    Схема блока питания:

    Как уже говорилось выше, схема простая, сетевое напряжение поступает на трансформатор, имеется сетевой выключатель и предохранитель, напряжение понижается трансформатором, верхняя честь схемы силовая. Переменное напряжение поступает на диодный мост и сглаживающий конденсатор. Далее поступает на DC-DC преобразователь, с преобразователя напряжение поступает на выходные клеммы. Минус схемы разрывается приборчиком, для удобства, регулировочные резисторы вынесены с платы.

    Нижняя предназначена для питания вольтамперметра. Трансформатор имеет отдельную обмотку, как и с силовой обмоткой, переменное напряжение поступает на диодный мост и фильтрующий конденсатор. Далее установлен линейный стабилизатор на 5 Вольт.

    Со схемой разобрались, теперь переходим к компонентам.

    Корпусом лабораторного блока питания будет служить старый корпус от регулятора паяльника. Регулятор паяльника еще времен СССР, очень добротный.

    Передняя панель будет из композитного пластика. Состоит пластик из двух пластин алюминия и пластика между ним, с одной стороны, он белый, с второй черный. Черная сторона будет лицевой.

    Понижающий трансформатор от старого оборудования, уже не помню какого. Его пришлось слегка доработать, сделал отвод на 22 Вольта, полная обмотка на 27 Вольт. Если оставить, то после диодного моста напряжение более 30 Вольт. Это много для стабилизатора 7805, установленного на DC-DC преобразователе. Он питает операционный усилитель схемы. Хоть и заявлено 40 Вольт, при учете максимального для 7805 в 30 Вольт.

    Понижающий преобразователь постоянного тока.

    Так же понадобятся клеммы, с данном случаи используются стары советские.

    Конденсатор на 4700 мкф*63 Вольта. Из расчета 1000 мкф на 1 Ампер. На модуле установлены еще 2*470 мкф.

    Диодный мост можно взять и единый, но у меня остался от старого проекта. Собран на 4-х диодах Д242.

    Изготовление блока питания

    На дне корпуса размечаем, сверлим отверстия под: трансформатор, диодный мост, модуль. Все спаиваем соответственно схемы. С модуля выпаял два подстроечных резистора. Вместо них припаял провода. На токовый 3 провода, на напряжение два.

    Питать Вольтамперметр буду через линейный стабилизатор на 5 Вольт. Диодный мост КЦ402 и конденсатор небольшой емкости.

    На задней панели делаю разметку под сетевой разъем и предохранитель. Все аккуратно выпиливаю и устанавливаю.

    На передней панели размечаю и вырезаю все отверстия. Тут будут: выходные клеммы, сетевой выключатель, резисторы тока и напряжения, Вольтамперметр.

    Распаял все элементы устанавливаемые изнутри. Сетевой выключатель коммутирует оба сетевых провода. Первоначально хотел применить другой.

    Устанавливаем все элементы передней панели. Плюсовая клемма отмечена красной краской. Ручки резисторов разного цвета. Красная по цвету отображения Вольт. Желтая по току. Пока что не подписывал где ток и напряжение. Позже буду менять резисторы на многооборотные, ручки возможно тоже поменяю.

    Верхнюю крышку покрасил. Между передней панелью и крышкой была слишком большая щель, ее закрыл небольшим уголком. При проверке блок выдал 9 Ампер на коротком, при 28 Вольтах, что составило чуть больше 250 Ватт.

    Такой вот Лабораторный Блок Питания получился. Им можно как питать разного рода устройства, также заряжать аккумуляторы. Первоначально хотел применить импульсный источник на 24 Вольта, но попался трансформатор нужных габаритов. Так же, стараюсь собирать устройство из того что есть. Всем спасибо за внимание!

    Найдены возможные дубликаты

    Это не надёжный блок питания, если выставить напряжение и нагрузка будет потреблять ток неравномерно, то напряжение тоже будет плясать

    Не так сильно, но да, тоже отличие от AC-DC нормального импульсного.

    Китайский вольт-амперметр за 100 рублей, как бы уже намекает на погрешность показаний :))

    Конкретно с фото меряет весьма точно, главное проверять нормальным прибором – нормальный ли прислали сначала, 2 знака после запятой, да, реальны+-пара процентов.

    А вот это – отстой. Транс слабенький и даже половину мощности DC-DC данных не выдаст. Да и вообще транс не одобряю, лучше его продать туда где он нужен реально и купить китайский AC-DC на нормальную мощность.

    Собственно основа и начало мыслей было тут

    Блок питания

    Доброго времени суток, уважаемые пикабушники! Начну с небольшой предыстории. Недавно собрал себе стереоусилитель для двух колонок от музыкального центра. Звук радовал но всё же не хватало низкочастотной составляющей. Так как конструировать сабвуфер для меня не самое простое дело, то нужно было что-то думать. Мне повезло и в гараже нашёлся старенький автомобильный активный (со встроенным усилителем) саб, со всей проводкой.

    Но подключить его дома, в розетку, само собой не представлялось возможным, т.к. питается он от 12 В. Тут и решено было изготовить блок питания, который бы решил эту проблему.

    Началось всё с печатной платы. Я далеко не профессионал в проектировании, поэтому решил взять готовую плату и переразвести под свои нужды. Далее фото этапов изготовления печатной платы методом лут (Если коротко, печатаем дорожки на лазерном принтере, желательно использовать глянцевую бумагу. Потом переносим с помощью нагретого утюга изображение на кусок фольгированного стеклотекстолита. Подробности узнайте у гугла).

    Как сделать блок питания из электронного трансформатора

    В настоящее время существует немало электроинструмента, работающего от аккумуляторных батарей. Однако через определенное время ресурс батарей постепенно снижается и не обеспечивает инструменту достижение нужной мощности. В таких случаях не помогает даже более частая зарядка, поэтому приходится решать, что делать дальше: вообще отказаться от агрегата или перевести его на питание от общей сети. Поскольку новая батарея по цене может сравниться с самим инструментом, можно самостоятельно изготовить блок питания из электронного трансформатора, что обойдется значительно дешевле.

    Технические условия изготовления

    Переделать электронный трансформатор в импульсный блок питания не так просто, как это оказывается на практике. Помимо трансформатора потребуется установка выпрямительного моста на выходе и сглаживающего конденсатора. В случае необходимости используется стабилизатор напряжения и подключение нагрузки.

    Необходимо учитывать, что запуск преобразователя невозможен без нагрузки или при недостаточной нагрузке. Это легко проверить с помощью светодиода, подключаемого к выходу выпрямляющего устройства с использованием ограничительного резистора. В итоге все дело закончится лишь одной вспышкой светодиодного источника света в момент включения.

    Для того чтобы появилась еще одна вспышка, преобразователь необходимо сначала выключить, а затем снова включить в сеть. Добиться постоянного свечения вместо вспышек возможно путем подключения выпрямителя к дополнительной нагрузке, которая производит отбор полезной мощности с выделением тепла. Данная схема может использоваться только при постоянной нагрузке, управляемой через первичную цепь.

    Если же нагрузка требует более 12 вольт, выдаваемых электронным трансформатором, необходимо перемотать выходной трансформатор. Существуют и другой вариант решения этой проблемы, более эффективный и менее затратный.

    Как создать импульсный блок питания не разбирая трансформатор

    Изготовление такого блока питания осуществляется в соответствии с представленной схемой. Его основой служит электронный трансформатор, мощность которого 105 ватт. Кроме того, переделка электронного трансформатора в блок питания потребует использования дополнительных элементов – выпрямительного моста VD1-VD4, выходного дросселя L2, согласующего трансформатора Т1 и сетевого фильтра.

    Для изготовления трансформатора Т1 потребуется ферритовое кольцо с размерами К30х18х7. Провод в первичной обмотке уложен вдвое, скручен в жгут и намотан в таком виде в количестве 10 витков. Лучше всего подойдет провод диаметром 0,8 мм, например, ПЭВ-2. Вторичная обмотка состоит из такого же провода с такой же укладкой, намотанного в 2х22 витка. В итоге получается двойная симметричная обмотка с общей средней точкой, получаемой путем соединения начала одной обмотки с концом другой.

    Дроссель L2 также изготавливается своими руками. Он состоит из такого же ферритового кольца, как и трансформатор. Для обмоток используются аналогичные провода ПЭВ-2, наматываемые по 10 витков. Сборка выпрямительного моста выполняется с помощью диодов КД213 или КД2997, которые могут функционировать при минимальной рабочей частоте 100 кГц. В случае использования других элементов, например, КД242, они будут лишь нагреваться, но не обеспечат требуемого напряжения. Площадь радиатора для установки диодов должна быть не меньше 0,6-0,7 м2. Радиатор используется вместе с изолирующими прокладками.

    В цепочку электролитических конденсаторов С4, С5 включено три элемента по 2200 мкф, соединенные параллельно. Данный вариант используют все импульсные источники питания с целью снижения общей индуктивности электролитических конденсаторов. В некоторых схемах могут параллельно с ними подключаться керамические конденсаторы на 0,33-0,5 мкф для сглаживания высокочастотных колебаний.

    Сетевой фильтр устанавливается на входе блока питания, хотя вся система сможет функционировать и без него. Входной фильтр оборудуется готовым дросселем марки ДФ50ГЦ, который можно взять в телевизоре. Все узлы и элементы блока монтируются на общую плату методом навесного монтажа. Для платы используется изоляционный материал, а вся готовая конструкция помещается в латунном или жестяном корпусе с вентиляционными отверстиями.

    При правильной сборки источника питания, какая-либо дальнейшая наладка не требуется, поскольку устройство сразу начинает нормально функционировать. Однако, проверить работоспособность все-таки необходимо. С этой целью на выходе блока питания подключаются резисторы на 240 Ом и минимальной мощностью 5 ватт в качестве нагрузки.

    Блок питания для использования в особых условиях

    Довольно часто возникают ситуации, когда применение импульсного трансформатора становится проблематичным из-за специфических условий эксплуатации. Это может быть слишком малое потребление тока или его изменение в широком диапазоне, в результате, блок питания просто не запускается. Характерным примером становится люстра, в которую устанавливаются светодиодные лампы вместо галогенных, несмотря на то, что в приборе освещения имеется встроенный электронный трансформатор. Решить эту проблему поможет упрощенная схема этого трансформатора, представленная на рисунке.

    На данной схеме обмотка управляющего трансформатора Т1, отмеченная красным, служит для обеспечения обратной связи по току. То есть, когда ток не идет через нагрузку или проходит в очень малом количестве, трансформатор просто не будет включаться. Это значит, что устройство не станет работать, если к нему подключить лампочку на 2,5 Вт.

    Данная схема может быть доработана, что позволит устройству работать вообще без нагрузки. Прибор окажется защищен от короткого замыкания. Как все это осуществить на практике, показано на следующем рисунке.

    Работа электронного трансформатора при минимальной нагрузке или вообще без нее, обеспечивается путем замены обратной связи по току, обратной связью по напряжению. С этой целью обмотка обратной связи по току убирается, а взамен ее в плату впаивается перемычка из проволоки, не затрагивая ферритовое кольцо.

    Затем на управляющем трансформаторе TR1, установленном на малом кольце, следует намотать обмотку, состоящую из 2-3 витков. На выходном трансформаторе наматывается еще один виток, после чего выполняется соединение обеих дополнительных обмоток. Если устройство не начнет функционировать, рекомендуется поменять расположение фаз на какой-либо обмотке.

    Резистор, устанавливаемый в цепь обратной связи, должен иметь сопротивление в диапазоне от 3 до 10 Ом. С его помощью определяется глубина обратной связи, определяющая значение тока, при котором наступает срыв генерации. Это и будет током срабатывания против короткого замыкания, в зависимости от сопротивления резистора.

    Импульсный блок питания

    Бестрансформаторный блок питания

    Электронный трансформатор схема

    Схема блока питания компьютера

    Схема регулируемого блока питания

    Как рассчитать блок питания для светодиодной ленты

    Читайте также:  Изготовление плетеной мебели своими руками
    Ссылка на основную публикацию
    Adblock
    detector