Что значит анодированный алюминий - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Что значит анодированный алюминий

Что значит анодированный алюминий

ОСНОВНЫМИ ПРЕИМУЩЕСТВАМИ АНОДИРОВАННОГО АЛЮМИНИЯ ЯВЛЯЮТСЯ:

1. Натуральный металлический блеск и респектабельный внешний вид

2. Отличная коррозионная стойкость

3. Группа горючести – НГ

4. Более 40 лет доказанного срока службы

5. Исключительная стойкость к царапинам

6. Нет риска отслоения анодной пленки

7. Нет риска выцветания

8. Нет риска пыления

9. Нет риска образования нитевидной коррозии

10. Сохранение оригинальной поверхностной структуры и дизайна

11. Оптимальное покрытие поверхности

12. Анодная пленка полностью прозрачная

13. Возможен постоянный контроль качества без повреждения тестируемой поверхности

14. 100% подлежит переработке

15. Производственный процесс приведен в соответствие с последними экологическими нормами

16. Имеет гарантию на срок службы (см. гарантию)

1. АУТЕНТИЧНЫЙ МЕТАЛЛИЧЕСКИЙ БЛЕСК И ВОСПРИЯТИЕ

Прозрачный анодированный слой прекрасно интегрируется в поверхность металла, полностью сохраняя естественный цвет алюминия.

Анодирование подчеркивает натуральную красоту металла, создает «живую» поверхность, которая постоянно переливается, отражая естественный и искусственный свет.

Независимо от исходного материала – алюминий, сталь, пластик – окрашенная поверхность всегда имеет одинаковый тусклый внешний вид. Для того чтобы добиться истинного металлического блеска, как у анодированного алюминия, для окрашенного материала используется система многослойных металлических пигментов, однако в этом случае существует вероятность появления разнотона.

2. ОТЛИЧНАЯ КОРРОЗИОННАЯ СТОЙКОСТЬ

Даже в своем естественном состоянии алюминий не подвержен коррозии в той же степени, как железо или сталь. Напротив, естественный слой оксида обеспечивает защиту от коррозии.

Анодирование создает идеально структурированный и контролируемый оксидный слой, который обеспечивает поверхность непревзойденной коррозионной стойкостью и сохраняет чистый природный металлический внешний вид алюминия. Анодирование используется для наружного строительства уже более 80 лет. С толщиной анодного слоя, необходимой для наружного применения, анодированный алюминий будет служить

без проблем очень долго даже в самых тяжелых условиях. В частности, анодированная обработка отличается высокой прочностью в городской и морской среде благодаря ее устойчивости к хлоридам и сульфатам.

3. ГРУППА ГОРЮЧЕСТИ – НГ

На молекулярном уровне анодный слой с алюминиевым основанием – это одно целое. А так как алюминий является негорючим материалом и его температура плавления 650°С, то и анодированный алюминий также является материалом с группой горючести НГ.

4. ПРОВЕРЕННАЯ ДОЛГОВЕЧНОСТЬ

Технология анодирования создана почти 100 лет назад. Несмотря на то, что данный процесс постоянно совершенствуется, особенно с точки зрения качества, химические и технологические основы анодирования остаются неизменными.

Свойства современных анодированных поверхностей полностью изучены и предсказуемы, благодаря многочисленным исследованиям. В частности, независимый анализ, проведенный по инициативе нашей компании, подтвердил, что анодированные поверхности остаются неизменными даже при сроках эксплуатации более чем 40 лет!

Для улучшения результатов использования широкой цветовой палитры органических красителей в Европе была разработана технология Sandalor. Суть технологии в двухстадийном окрашивании алюминия. Сначала производится электрохимическое окрашивание, характеризующееся наивысшей светостойкостью, а затем еще и органическое окрашивание. Таким образом, можно получить широкую цветовую гамму покрытий с хорошей стойкостью цвета.

5. СТОЙКОСТЬ К ИСТИРАНИЮ

Оксид алюминия является очень твердым соединением, которое признано вторым по твердости после алмаза по шкале минеральной твердости Мооса. Поэтому поверхность анодированного алюминия обеспечивает превосходную устойчивость к царапинам и истиранию, особенно по сравнению с поверхностью с полимерным покрытием.

6. НЕТ РИСКА ОТСЛОЕНИЯ АНОДНОЙ ПЛЕНКИ

Анодирование является электролитическим процессом, который преобразует поверхность металла в оксидный слой, интегрированный в сам металл. Это не покрытие, нанесенное на поверхности металла. Следовательно, нет рисков разрушения анодной пленки, связанных с такими процессами, как пыление, образование пузырей, трещин, сколов или отслоений, которые могут возникнуть при поверхностных окрашиваниях, к примеру,

при полимерном покрытии.

При анодировании не возникнет ни одного из видов брака отслоения, даже на торцах или сгибах.

7. НЕТ РИСКА ВЫЦВЕТАНИЯ

Натуральное серебро, шампань, бронза и черный цвет не содержат органических элементов. Такие покрытия не выцветают в течение всего срока службы.

Для сравнения органические порошковые покрытия подвержены выцветанию в разной степени в течение всего срока эксплуатации здания.

8. НЕТ РИСКА ПЫЛЕНИЯ

Пыление – это формирование мелкодисперсного порошка на окрашенной поверхности пленки под воздействием атмосферных явлений (песчинок, переносимых ветром). Оно может вызвать значительное ухудшение внешнего вида поверхности со снижением уровня

глянца, поверхностного блеска и цвета.

Анодированный алюминий не подвержен данной проблеме: он устойчив к негативному воздействию окружающей среды, одинаково стабилен в условиях жаркого (пустынного), морского или влажного климата.

9. НЕТ РИСКА НИТЕВИДНОЙ КОРРОЗИИ

Нитевидная коррозия– это «атака» на скрытую область между алюминием и слоем покраски, которая приводит к распространению коррозии под покрасочным слоем.

При анодировании анодный (оксидный) слой составляет одно целое с алюминием, и межуровневый слой просто отсутствует. А это значит, что покрытие никогда не будет подвержено нитевидной коррозии.

Причем в случае повреждения поверхности от удара или прокола, алюминий просто восстановит себя путем естественного окисления.

10. ЕДИНАЯ ОТДЕЛКА ПОВЕРХНОСТИ ДЛЯ ВСЕХ ФОРМ И ТЕКСТУР МЕТАЛЛА

Анодирование является процессом, который может быть осуществлен до или после преобразования металла. Так как это процесс погружения, а не распыления покрытия, анодирование обеспечивает однородность и повторяемость на большинстве металлических форм и текстурированных поверхностей, таких как перфорированные листы, обработанные плиты, полированный или матовый металл, сетчатый материал, поверхности c отделкой и т. д.

Анодирование позволяет избежать риска образования разной толщины покрытия или эффекта «апельсиновой корки», которые характерны для поверхностей с полимерными покрытиями.

11. ОПТИМАЛЬНОЕ ПОКРЫТИЕ

Анодирование как процесс погружения обеспечивает более равномерное покрытие поверхности, особенно для экструдированных профилей.

При распылении краски (и особенно при порошковой покраске) невидимые (скрытые) поверхности часто не прокрашиваются.

12. НЕПРОНИЦАЕМЫЙ АНОДНЫЙ СЛОЙ

Должным образом уплотненный анодный слой является полностью непроницаемым. Кроме того, при резком колебании температуры окружающей среды анодный слой не подвержен физическим изменениям и тепловой хрупкости.

Когда полимерное покрытие подвергается температурному воздействию (ниже температуры стеклования), с ним происходят деструктивные изменения, теряется

эластичность, оно становится хрупким, стеклообразным.

13. КОНТРОЛЬ КАЧЕСТВА

При анодировании возможно постоянно проводит жесткий контроль качества покрытия. Анодируемая поверхность при этом сохраняет все свои свойства и не повреждается.

14. ЭКОЛОГИЧЕСКИЕ ПРЕИМУЩЕСТВА АНОДИРОВАННОГО АЛЮМИНИЯ

Одним из ключевых преимуществ алюминия над другими материалами является то, что он может быть переработан повторно при помощи переплавки с минимальной потерей на каждом цикле. В Европе более 30% потребляемого алюминия изготовлено из переработанного алюминия, и более 90% алюминия, используемого в архитектуре, перерабатывается в конце срока службы здания.

В процессе переработки потребляется всего 5% энергии, необходимой для производства первичного алюминия. Такой подход к использованию материалов вносит значительный вклад в обеспечение экологической безопасности.

Анодированный алюминий – материал уникальный. Он представляет собой только чистый алюминий и его легирующие элементы, а также кислород. Это означает, что он полностью перерабатывается без дополнительных химических процессов и образования выбросов.

Благодаря этому на рынке качественного алюминиевого лома анодированный алюминий ценится очень высоко. Его стоимость позволяет компенсировать затраты на снос зданий в конце срока их эксплуатации.

15. ЭКОЛОГИЧЕСКИ ЧИСТЫЙ ПРОИЗВОДСТВЕННЫЙ ПРОЦЕСС

Современные заводы по архитектурному анодированию соответствуют самым строгим экологическим стандартам с полной переработкой используемых химреактивов и восстановлением сточных вод. Анодирование не требует экологически опасной предварительной обработки, как, например, процесс хроматирования.

Процесс анодирования не сопряжен с образованием CO2 или других выбросов растворителей.

Гарантии часто рассматриваются заказчиками и владельцами зданий как залог уверенности в длительном сроке службы покрытия. Мы даем следующие гарантии на наши покрытия.

Гарантия на отсутствие расслаивания — пожизненная.

Гарантия на отсутствие коррозии:

• при толщине 25 мкм — 40 лет,

• при толщине 20 мкм — 20 лет,

• при толщине 15 мкм — 10 лет,

• при толщине 10 мкм — 5 лет.

Гарантия на стойкость цвета к выгоранию (на изменение дельта Е по шкале LAB не более 3 единиц в

течение гарантийного срока для Беларуси): для С0 — пожизненная, для С31, С32, С33, С34, С35, С31 — 15 лет, для остальных цветов — 5 лет.

Порошковая покраска используется на многих крупных строительных объектах, так как она дешевле и считается альтернативой архитектурного анодирования.

Порошковая покраска мягче, менее долговечна. И если окраска произведена не на должном уровне, то с течением времени может начаться процесс отслоения.

Кроме того, окрашенная поверхность не в состоянии повторить естественный металлический блеск анодирования.

Архитектурное анодирование дает покрытие тверже, чем стекло, а это означает, что оно будет менее подвержено повреждениям, износу и при необходимости может быть очищено при помощи абразива для восстановления исходного блеска.

Полимерное покрытие мягкое, склонное к царапинам, и не может быть подвержено абразивной чистке.

Подобные покрытия очень быстро теряют свой блеск и цвет. И если анодирование используется в архитектуре уже более 80 лет, то полимерное покрытие для фаса-

дов стали применять в конце 1970-х годов, то есть с

того момента прошло менее 40 лет.

Анодирование – это процесс, при котором покрытие «выращивают» на поверхности алюминия, и оно никогда не сможет отслоиться. Полимерное покрытие – это

краска, которая наносится, а в последующем требует сложного ухода.

Если вы хотите, чтобы ваш фасад прослужил очень долго, анодирование является единственным правильным выбором.

Алюминий является металлом, который предоставляет неограниченные возможности для дизайна и творчества и полностью отвечает современным экологическим требованиям и потребительским качествам.

10 КЛЮЧЕВЫХ ПРЕИМУЩЕСТВ АЛЮМИНИЯ

• Презентабельный современный натуральный внешний вид

• Многочисленные возможности выбора текстур, цветов и отделки поверхности

• Высокая прочность на протяжении всего срока службы

• Нуждается в минимальном уходе

• Высокая прочность при легком весе

• Не горит и не выделяет вредные испарения в случае пожара

• Может быть полностью и неоднократно переработан с помощью простой переплавки

• Доступен в разнообразных формах для различных областей применения

• Алюминий создает непроницаемый барьер для воздуха, воды и ветра

Что такое анодированный алюминий

На сегодняшний день алюминий остается очень важным и востребованным материалом для изготовления всевозможных деталей, подделок и прочее. Можно перечислить массу его преимуществ, например, небольшой вес, достаточная прочность, не подвергается коррозии, его легко обрабатывать для дальнейшего использования. Но при всем этом, многих не привлекает его внешний вид. Если вы хоть раз пробовали красить алюминий, то ваши попытки могли заканчиваться безуспешно, ведь краска держится на алюминии очень плохо. Если его использовать без краски, то очень скоро он покроется темными пятнами. Чтобы все это не допустить, была разработана технология анодирования алюминия. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками.

Читайте также:  Хромирование алюминия технология

Анодирование – что это

Под анодированием подразумевается анодное оксидирование. То есть это процесс, в результате которого на поверхности алюминия образуется или появляется оксидное покрытие. Вследствие этого процесса происходит окисление металла. В результате алюминий становится неуязвимым для негативного воздействия извне. То есть окисленное место становится намного прочнее.

Зачем анодировать

Как уже говорилось выше, при взаимодействии алюминия с кислородом, на его поверхности образуется пленка. Она предотвращает окисление. Но здесь есть важный нюанс, эта пленка из природного оксида очень тонкая. Как следствие она может прорываться. И чтобы исключить это, было решено анодировать алюминий. Как следствие, металл приобретает намного лучшие технические характеристики.

Так, анодированный алюминий не подвергается коррозии. Образующаяся пленка устойчива к износу. Спустя время, это покрытие не будет даже отслаиваться. Здесь важно понимать еще один нюанс, почему это стало возможным. Некоторые металлы покрывают хромом или цинком. В случае алюминия его ничем не покрывают. Эта пленка образуется непосредственно на самом металле сама по себе.

Так, к этой процедуре прибегают с целью, придать металлу более декоративный внешний вид, например, тот или иной оттенок. Примечательно то, что цвет анодирования можно изменять. Для этого следует применять анилиновые красители, которые используются при покраске одежды.

Если говорить за промышленные технологии, то там анодируют алюминий в растворе серной кислоты 20 процентов. Что касается домашних условий, то данная технология небезопасна, поэтому необходимо использовать другую методику.

Применение анодированного алюминия

Существует множество сфер использования для достижения абсолютно разных целей. Сейчас рассмотрим их:

  1. Основа для окраски. Защищенное покрытие способно удерживать слой краски продолжительное время. Для этого осуществляется соединение органического покрытия с хромовым анодным. Даже если слой краски повредится, его легко восстановить, а самому изделию не грозит коррозия и прочее. Данная технология эффективна при нанесении органических красок.
  2. Защита от коррозии. Эта защита способна справляться с воздействием даже соленой воды.
  3. В дизайне. Использование специальных красителей можно придавать алюминию абсолютно разные цвета. Благодаря этому изделиям можно придавать красивый внешний вид.
  4. Чистые руки. Нередко алюминий используется для создания перил, рукояток, поручней и прочее. Если он будет без анодного покрытия, то на руках могут оставаться следы. Чтобы это исключить все эти детали анодируют, что позволяет держать руки в чистоте. Для достижения таких результатов поры анодного покрытия наполняются.
  5. Отражение в проекторах. Технология сернокислого анодирования используется для защиты отражателей прожекторов. Это отражение будет сохраняться годами. А если необходимо почистить его поверхность, то для этого нет никаких проблем.
  6. В тепловых отражателях. Используется анодированный алюминий в нагревательных рефлекторах. Поверхность легка к любому очищения. Может использовать в помещениях с повышенной влажностью. Толщина покрытия составляет 1 микрон.
  7. Эффективная борьба с износом и трением. За счет более твердого покрытия значительно снижается износ. В этом случае анодное покрытие может достигать до 60 микрон.
  8. Электрический изолятор. В некоторых типах трансформаторов сегодня принято использовать алюминиевую ленту, в обязательном порядке анодированную. Такое покрытие прекрасно сопротивляется воздействию тепловой энергии.

Методики анодирования

Анодировать алюминий можно разными способами, по крайней мере, мы упомянем о двух:

  1. Теплое анодирование.
  2. Холодное анодирование.

Рассмотрим важные особенности каждой технологии.

Теплое анодирование

Выполняется эта работа при комнатной температуре от 15 до 20 градусов по Цельсию. Процедура известна как легкоповторяемая. При простых манипуляциях можно получить красивый результат. Однако, данный способ не позволяет достигать прекрасной антикоррозийной защиты. При контакте материала с агрессивной средой, коррозия может проявиться. Также заготовка не будет отличаться хорошей механической защитой. Например, покрытый материал легко поцарапать даже иголкой, а иногда можно стереть и рукой.

Но с другой стороны, это покрытие служит прекрасным основанием для дальнейшей обработки материала. Процесс анодирования проходит в такой последовательности:

  1. Заготовка обезжиривается.
  2. Изделие крепится в подвеске.
  3. В ванне необходимо анодировать заготовку до молочно-мутного оттенка.
  4. После в холодной воде осуществляется процесс промывки.
  5. Далее происходит процесс окраски заготовки. Для этого используется горячий раствор анилинового красителя.
  6. На протяжении 30 минут происходит заключительный этап – закрепление всех слоев.

Холодное анодирование

Под этим подразумевается то, что процесс анодирования происходит при температуре от -10 до +10 градусов по Цельсию. Благодаря этому можно достичь намного лучшего качества, твердости и прочности анодного покрытия. Холодный процесс прекрасно демонстрирует небольшую скорость растворения внешней пленки. Как следствие, образуется толстый слой. Совсем обратная ситуация при теплом процессе.

Итак, для достижения таких результатов необходимо создать условия принудительного охлаждения. Без этого создать красивое и износоустойчивое покрытие создать будет невозможно. Если говорить о минусе этой технологии, то она заключается в следующем: поверхность нельзя окрасить органическими красителями.

Технологический процесс того, как происходит холодное анодирование алюминия выглядит так:

  • Поверхность тщательно обезжиривается.
  • Заготовка крепится в подвеске.
  • В ванне происходит процесс анодирования до образования плотного оттенка.
  • Осуществляется промывка в холодной и горячей воде.
  • Далее происходит процесс варки заготовки в дистиллированной воде. Также изделие выдерживается на пару. Эти действия позволяют закрепить все образовавшиеся слоя.

Думайте о безопасности

Итак, выполнить этот процесс в домашних условиях можно, но для этого следует быть крайне предусмотрительным и соблюдать технику безопасности. Лучше всего делать это на открытом воздухе. Ведь кислота является очень опасным веществом. И это даже несмотря на то, что вы будете использовать большой концентрат кислоты.

Итак, для работы следует использовать защитную одежду, перчатки и очки. Плюс ко всему, всегда иметь рядом раствор соды или ведро чистой воды.

Заключение

Итак, вот мы и узнали с вами, что такое анодированный алюминий. Мы рассмотрели сферы его использования и варианты того, как выполнить подобную работу самостоятельно. В дополнении ко всему, предлагаем просмотр видео, которое закрепит все полученные знания из этой статьи о том, как анодировать алюминий своими руками. Мы уверены в том, что вы справитесь со всеми работами самостоятельно без посторонней помощи.

Что такое алюминий анодированный

Применение алюминиевых профилей для декоративной отделки фасадов и внутренних интерьеров используется более полувека. Красивый, пластичный и очень легкий металл во влажной атмосфере достаточно быстро покрывался серым налетом окислов. Сохранить серебристый блеск и выразительность металлического декора оказалось возможным только с помощью нанесения специального покрытия. Внешний вид анодированного алюминия практически не изменился, краски стали ярче, а о коррозии можно было забыть раз и навсегда.

Как работает анодирование

Чтобы понять, что это — анодированный алюминий, нужно чуть подробнее остановиться на том, как образуется защитная пленка. Большинство металлов защищают либо протекторами, либо изоляторами из сплавов и соединений, более стойких к кислороду и влаге. Анодированный защитный слой представляет собой обычный окисленный алюминий Al2O3, но не в виде мягкой аморфной микропленки, которая всегда присутствует на его поверхности, а как кристаллическая структура, по свойствам напоминающая корунд или шпинель.

Анодированная пленка отличается следующими характеристиками:

  • Микрокристаллическая структура;
  • Наличие огромного количества пор в поверхностном слое анодированной пленки и сверхплотная и прочная структура в основании;
  • Невероятно прочное сцепление окисленного слоя с металлом.

Что это означает? Это значит, что пленка из анодированного алюминия не отслоится от основы при любых нагрузках и через 40 лет, тогда как никелевое или лакокрасочное покрытие со временем медленно отслаивается от алюминиевой матрицы.

В зависимости от выбранных условий получения анодированной поверхности технология позволяет получить несколько вариантов защитного слоя.

Сверхтонкая окисленная пленка упорядоченной структуры при толщине в 10-25 мкм на поверхности алюминиевого зеркала даже не просматривается невооруженным глазом. Тем не менее, тончайший анодированный слой на алюминиевом зеркале дает возможность предохранять металл от окисления и одновременно пропускать до 95% светового потока.

Технология анодирования алюминия

Процесс получения защитных анодированных покрытий на поверхности алюминия основан на анодном окислении алюминия в растворе электролита. В зависимости от требуемого результата для анодированного окисления используют три вида электролитов:

  • Обработка малыми токами при постоянном напряжении в слабокислотном электролите;
  • Нанесение анодированного покрытия на бихроматно-кислотном электролите;
  • Окисление алюминия в щелочном электролите.

Во всех трех случаях происходит образование защитной пленки за счет окисления, уплотнения и превращения окисленного алюминия в плотную кристаллическую структуру. Получается покрытие, напоминающее стеклянные микрочешуйки.

Меняя кислотность и температуру электролитической ванны, ток и рабочее напряжение на аноде и катоде, можно получать очень разные по свойствам пленки из анодированного алюминия. При небольшой величине тока образуется неуловимая глазу патина. Ее сложно ощутить, даже касаясь пальцами поверхности анодированного алюминия. Единственным признаком наличия защитной пленки является равномерный цвет металла и отсутствие эффекта пачкания рук.

Обычный алюминий под воздействием потожировых выделений кожи пальцев может растворяться с образованием алюминатов органических кислот. В результате чего на руках остаются темно-серые пятна. Поэтому большинство изделий из алюминия защищаются анодированием.

Суть процесса анодирования

Механизм образования на поверхности алюминия защитного покрытия основан на прямом превращении металла в окись с кристаллической структурой. Если просто закрепить на алюминиевой пластинке анод, катод зафиксировать на угольном электроде, подать напряжение и погрузить все это в кислотный или щелочной электролит, то анодной пленки не получится. Металл просто растворится в электролите.

Для того чтобы на поверхности алюминия образовалась кристаллическая пленка, требуется высокое напряжение и токи. Сам процесс образования анодированного слоя сопровождается большим выделением тепла, поэтому ванну с электролитом приходится охлаждать до нескольких градусов.

Процесс настолько интенсивный, что на пластине из алюминия вспыхивают микроскопические огоньки плазмы. Металл мгновенно расплавляется, окисляется, и давлением электролит прочно припечатывается к основанию. Поэтому-то на фотографии анодированная пленка выглядит, как крокодилья кожа. Подобный процесс можно относительно просто воспроизвести в домашних условиях, но, учитывая высокое напряжение более 100В и большие токи, кустарное получение анодированного алюминия является небезопасным. Кроме того, потребуется эффективная вентиляция для удаления испаряющегося электролита. Режимы работы установки по получению анодированного алюминия не являются секретом и давно опубликованы в технической литературе.

Читайте также:  Где добывают алюминий в России

Практическое применение анодированного алюминия

Традиционно процесс анодирования используется для получения нескольких видов окисленных пленок:

  • Сверхтонкие микрокристаллические покрытия толщиной 20-25 мкм;
  • Декоративные пленки из анодированного алюминия;
  • Электрическая изоляция на основе кристаллической Al2O3;
  • Специальные защитные пленки толщиной 1,5-2,0 мм.

Полированный до состояния зеркала алюминий отражает до 98% светового потока, но уже через сутки из-за окисления образуется налет, который превращается в серую пленку. Большинство оптических приборов, оборудованных отражателями из полированного алюминия, защищаются сверхтонкой микрокристаллической пленкой из бесцветного корунда. Плотная беспористая структура надежно перекрывает доступ кислорода и водяных паров к легкоокисляющемуся алюминию, при этом сохраняется 95-97% светопропускания. Пленкой из анодированного алюминия защищены 99% всех фар, мощных фонарей, отражателей и оптических приборов.

Декоративные материалы

Покрытие из анодированного алюминия обладает достаточно интересной структурой. Наружные 35-50 мкм пленки представляют собой микропористую, как губка, поверхность с очень узкими и глубокими порами. Даже небольшой количество красителя глубоко проникает в анодированный алюминий, превращая его в очень прочное и одновременно яркое покрытие. Бесцветные микрокристаллы преломляют падающий на анодированное покрытие свет, в результате чего краски становятся яркими и насыщенными. Нанесенное лакокрасочное покрытие не выгорает и не теряет своей интенсивности.

Большую часть современных лакокрасочных материалов с эффектом иризации изготавливают путем добавления микроскопических чешуек с покрытием из окисленного алюминия. Тончайшая пленка из анодированного металла обеспечивает высокую стойкость наполнителя к воздействию ультрафиолета и органических растворителей, поэтому краска не теряет насыщенности в течение десятков лет.

Популярность покрытий возросла настолько, что металл напыляют на стальные и даже чугунные детали конструкций для последующего окисления и получения анодированной защиты. Вместо небезопасного покрытия из цинка или очень недешевых легированных сталей сегодня массово используется анодированный алюминий. Например, металлический фасад из стеклопакетов многоэтажного торгового центра пришлось бы ремонтировать уже через пять лет, а с анодированными алюминиевыми рамами конструкция может простоять несколько десятков лет.

Покрытия из кристаллической окиси металла серьезно потеснили наиболее стойкие порошковые и керамические краски, ранее массово применявшиеся для защиты фасадов и конструкционных элементов из алюминиевых сплавов.

Специальные пленки из анодированного алюминия

Помимо высоких декоративных качеств, пленки из анодированного алюминия обладают целым рядом очень полезных свойств. Например, высокая твердость и износостойкость. Микрокристаллическая структура из корунда практически не боится любого абразива. Песчаная и цементная пыль, и даже карбиды и силициды металлов не в состоянии существенно повредить защиту из корунда.

Поэтому детали с анодированным покрытием невозможно зачистить наждачной бумагой или полировочной или шлифовальной пастой. Толстый слой кристаллической Al2O3 на поверхности трущихся деталей увеличивает ресурс любого механизма в два-три раза. Защиту из окисленного алюминия используют при высокотемпературной окраске дисков колес, элементов подвески карьерных машин и магистральной техники.

Применение покрытия из анодированного алюминия:

  • Не деградирует под влиянием морозов, жары, ультрафиолета или химически активных веществ, выдерживает прямой контакт с кислотами, щелочами, органическими растворителями;
  • Не пылит и не изнашивается при многократной мойке, чистке, под истирающей нагрузкой;
  • Нет нитевидной и газовой формы коррозии, если слой анодированного алюминия изготовлен с соблюдением технологии, то срок службы покрытия может легко достичь 60-80 лет.

Второе интересное качество пленки из анодированного алюминия – низкая теплопроводность. Из обработанного металла изготавливают литейные формы для отливки из медных сплавов, при том, что температура алюминия ниже, чем у меди, на несколько сот градусов. Тонкое, всего в пару миллиметров окисленное покрытие надежно защищает алюминиевую форму от перегретой жидкой меди.

Радиаторы отопления, трубопроводная арматура, котлы, печи, камины, изготовленные из стали и чугуна, по современным стандартам защищаются пленками из анодированного алюминия. Даже при нагреве стенок, колосников, силовой арматуры до 500-600 о С сталь и чугун не обгорают и не коррозируют до ржавых дыр. Срок службы стальной печи вырос с 10 до 40 лет службы.

Заключение

Применение тонких пленок кристаллической Al2O3 позволяет получить покрытия с совершенно новыми свойствами. Речь идет о том, что большинство металлических деталей и конструкций, и даже отдельные виды пластика можно обеспечить практически «вечными» покрытиями. Даже если вследствие удара или скола пленка будет повреждена, ее вполне можно восстановить с помощью простейшей процедуры. Пока что окисленный металл обходится дороже краски, поэтому используется, как декоративный материал и способ защитить металлическую поверхность в экстремальных условиях эксплуатации.

Свойства анодированного алюминия

В прошлой статье были рассмотрены основные характеристики анодирования алюминия, принципы процесса и основные электролиты анодирования, получение цветных (декоративных) и функциональных оксидных пленок. Рассмотрим свойства анодированного алюминия: механические (эластичность и твердость, износостойкость), оптические, тепловые, электрические и химические свойства.

Содержание:

Толщина анодно-оксидных покрытий

Все анодно-окисные пленки на алюминии имеют тонкий и твердый барьерный слой, примыкающий к основному металлу. Адгезионные свойства пленки не рассматриваются, т. к. окисные пленки на алюминии образуются из основного металла. При использовании нерастворяющих электролитов, содержащих борную кислоту, виннокислый аммоний, борат аммония (так называемых электролитов барьерного типа) образуется только этот барьерный слой, который имеет толщину в нанометрах, которая ориентировочно равна напряжению при анодировании с коэффициентом 1,4. Если используются электролиты, растворяющие алюминий, то толщина пленки значительно больше и может достигать 0,38 мм. При использовании обычного режима оксидирования в серной кислоте толщина покрытий максимально 25 мкм, обычный режим и хромовый электролит позволяют получать пленки до 5 мкм.

Плотность покрытий

Применение нерастворяющих электролитов анодирования позволяет получать барьерный слой с высокой плотностью, который достигает значений в 3,2 г/см 3 . Растворяющие электролиты дают пленки меньшей плотности – от 2,9 до 3,0 г/см 3 . Повышение температуры процесса анодирования и повышение концентрации растворов электролитов снижают плотность оксидных пленок на алюминии, что объясняется повышенным размером пор пленки. Минимальная, регламентируемая плотность покрытия составляет примерно 1,5 г/см 3 .

Прочность, эластичность и твердость анодных пленок

Наибольшее влияние на свойства анодного покрытия оказывает режим работы ванн анодирования (режим процесса). Рассмотрим, как изменяются свойства покрытий в зависимости от основных характеристик процесса:

  1. Повышение температуры раствора и кислотности электролита (быстрое увеличение скорости растворения металла в процессе) – увеличение мягкости, эластичности и поглощающей способности покрытия, снижение защитной способности.
  2. Повышение плотности тока (уменьшение скорости растворения металла при перемешивании раствора) – механические свойства покрытия зависят от температурного режима и степени перемешивания, защитная способность покрытий увеличивается.
  3. Увеличение продолжительности процесса (увеличение скорости растворения металла в процессе) – незначительное увеличение мягкости, эластичности и поглощающей способности, повышение защитных свойств.
  4. Использование переменного тока (скорость растворения металла не меняется) – увеличение мягкости, эластичности и поглощающей способности, снижение защитных свойств анодного покрытия.

Прочность анодированного алюминия

Прочность и пластичность анодных пленок не отличается от характеристик основного металла, что нельзя сказать об усталостной прочности – при получении твердого анодного покрытия сопротивление усталости может быть снижено до 50%. Для нивелирования данного эффекта изделия обрабатывают в 5%-ном кипящем растворе бихромата калия в течение 10-15 минут, при этом основные характеристики анодной пленки не изменяются.

Эластичность и твердость

Как показано выше, твердость и эластичность анодного покрытия в значительной степени зависит от режима работы ванны анодирования. Характеристики эластичности и твердости не измеряются непосредственно, покрытие считаются гибкими (при условии, если поверхность изделия не имела дефектов в виде волосяных трещин), однако изделия нельзя непрерывно деформировать без повреждения пленки. При использовании переменного тока анодные пленки получаются более эластичными, соответственно снижается прочность покрытий. Использование хромовой кислоты также увеличивает степень эластичности пленки. В числовом выражении эластичность можно выразить в степени максимального удлинения металла до образования волосяных трещин (микротрещин), даже при использовании наиболее благоприятного режима процесса и хромового электролита данная величина составит не более 0,3%. На острых углах возможно растрескивание пленки, что оказывает существенное влияние на защитные свойства пленки, в частности на коррозионную защиту. Твердость по шкале Маха анодной пленки составляет 7-9, что значительно ниже, покрытия хромом, полученного гальваническим методом.

Износостойкость поверхности деталей после анодирования

Для оценки износостойкости покрытий используется понятие удельного сопротивления к истиранию, которое характеризуется соотношением износостойкости покрытия к его толщине. Износостойкость напрямую зависит от твердости покрытия и его толщины. Наружный слой покрытия имеет меньшую твердость и износостойкость, что характерно не только для анодных покрытий. При использовании растворяющих электролитов (сернокислого электролита) удельное сопротивление анодной пленки к истиранию увеличивается при повышении напряжения в процессе анодирования. Твердые анодные покрытия имеют в 2-3 раза более высокое удельное сопротивление к истиранию по сравнению с обычными пленками. Существуют различные методы определения износостойкости покрытий, например, регламентирован метод испытания износостойкости поверхности металла при воздействии воздушной струи с абразивом в контролируемом режиме.

Влияние режима анодирования на износостойкость анодных покрытий.

Средняя износостойкость, г.

Толщина покрытия, мкм

Удельное сопротивление к истиранию, г/мкм

Серная кислота (3,3 н.); 20 мин; 21 0 С; 1,5 а/дм 2

Серная кислота (7,5 н.); 20 мин; 21 0 С; 1,5 а/дм 2

Серная кислота (3,3 н.); 20 мин; 15,5 0 С; 1,5 а/дм 2

Оптические свойства анодных пленок

Для того, чтобы дать оценку оптическим свойствам анодных покрытий сравним их со свойствами различных гальванических покрытий и полированной нержавеющей стали. Регламентируют три характеристики отражающей способности – полная, зеркальная (измеряются в % отражения падающего света) и диффузная.

Полная отражающая способность анодной пленки на алюминии после полирования достигает 90%, что ниже только данного значения у посеребренной латуни (98%), но выше чем у хромированной латуни (65%) и полированной нержавеющей стали (60%). С увеличением толщины анодной пленки полная отражающая способность снижается, поэтому в производстве регламентируют толщину пленки, с учетом необходимой защитной способности.

Производство зеркальных покрытий – это отдельное направление и там на отражающую способность влияет прежде всего чистота сплава – получение максимальной отражающей способности (99,9%) возможно при использовании сплавов наивысшей чистоты (99,9% Al), покрытия толщиной до 2 мкм и зеркальной полировки. При этом диффузная отражающая способность имеет минимальные значения.

Читайте также:  Ржавеет ли алюминий в воде

Если в результате обработки планируется получить матовую поверхность (пленку с диффузной отражающей способностью), в качестве электролита используют раствор фосфорной и серной кислот для яркого травления.

Блестящие анодированные покрытия на алюминии получили широкое распространение при изготовлении автомобильных деталей. Поверхность анодированного алюминиевого сплава, после глянцевания по своим декоративным качествам схожа с поверхностью деталей после гальванического хромирования. Например, алюминиевые автомобильные диски с помощью анодирования могут быть не только окрашены в различные цвета, но и приобрести внешний вид хромированных, что наряду с повышением функциональных качеств обеспечивает исключительные декоративные свойства.

Теплостойкость

Теплостойкость анодных покрытий характеризуется температурой плавления оксида алюминия, которая составляет 2050 0 С, что значительно превосходит температуру плавления чистого алюминия или его сплавов. При повышении температуры оксидные пленки не отслаиваются, но при повышении температуры до 100 0 С возможно растрескивание покрытия, что связано с тем, что коэффициент теплового расширения оксидной пленки около 20% от коэффициента расширения основного металла. Растрескивание оксидной пленки оказывает негативное влияние на коррозионно-защитные свойства покрытий и в некоторой степени ухудшает декоративные качества. Растрескивание покрытий, полученных при использовании хромового электролита значительно ниже, чем покрытий, полученных в серной кислоте. При повышении температуры до 400 0 С начинается процесс дегидратации уплотненных покрытий.

Такие характеристики как тепловое излучение и отражательная способность также находятся в прямой зависимости от характеристик оксидного слоя. Способность излучать тепло для чистого алюминия незначительная, возрастает по мере увеличения толщины оксидного слоя, и при 400 0 С алюминий с толстым оксидным слоем способен излучать тепло с интенсивностью более 70% от излучения абсолютно черного тела, а при рабочей температуре водных и паровых реакторов данная характеристика приближается к 100%. Для увеличения способности алюминиевого изделия отражать тепло толщина оксидной пленки должна быть минимальной и в тоже время в достаточной степени обеспечивать защиту поверхности детали от потускнения. При толщине 0,85 мкм оксидная пленка практически не задерживает ИК излучение и полированная поверхность основного металла отражает до 95% излучения. Очевидно, что отражательная способность в значительной степени зависит от чистоты поверхности материала до анодирования – полированная поверхность с высоким классом чистоты будет отражать тепло эффективнее.

Электрические свойства – пробивное напряжение анодных покрытий

Пробивное напряжение анодных покрытий зависит от характеристик основного металла – сорта алюминия, чистоты поверхности, наличия легирующих компонентов. Также оказывает влияние толщина и текстура оксидного слоя. На покрытиях большой толщины с дополнительным покрытием лаком возможно получение пробивного напряжения более 2 тыс. вольт. На практике, в большинстве случаях такие высокие значения не требуются. Для покрытий, получаемых методом непрерывного анодирования (проволоки, полос) при толщине всего 5-8 мкм достигается пробивное напряжение между витками или совмещенными пластинами в 250 вольт, причем эта значение не изменяется при нагреве до 500 0 С. Растрескивание оксидного слоя при изгибе или повышении температуры не оказывает значительного влияния на характеристику пробивного напряжения (в сухих условиях эксплуатации).

Химические свойства – коррозионная стойкость анодных покрытий

Коррозионная стойкость является важнейшей функциональной характеристикой любого покрытия – нанесенного гальваническим, химическим или другими способами. Для изделий из анодированного алюминия десятилетний срок службы без потери декоративных качеств обычная практика и является гарантийным. При регулярном обслуживании алюминиевых конструкций, очистки их от атмосферных отложений срок службы может быть увеличен в два три раза. Основные характеристики анодного покрытия, влияющие на коррозионную стойкость это его толщина и эффективность уплотнения. Нормативные документы регламентируют толщину покрытий в зависимости от предполагаемых условий эксплуатации. ГОСТ 9.031-74 регламентирует толщину следующим образом: 9-15 мкм для бытовой эксплуатации, 21 мкм эксплуатация в промышленной среде, 25 мкм эксплуатация в агрессивных условиях.

Неточное соблюдение основных параметров процесса анодирования алюминия может в значительной степени снизить коррозионную стойкость. Например, неэффективный отвод тепла от поверхности изделия (при недостаточным перемешиванием электролита) в процессе анодирования приводит к образованию мягкого наружного слоя, что по мнению специалистов может оказать влияние на защитные свойства.

Что такое анодированный алюминий и как анодируют алюминиевый профиль

Алюминий сам по себе в обычных атмосферных условиях покрывается оксидной пленкой. Это естественный процесс под влиянием кислорода. Практически использовать его невозможно, так как пленка слишком тонка, почти виртуальна. Но было замечено, что она обладает кое-какими замечательными свойствами, которые заинтересовали инженеров и ученых. Позже они смогли получать анодированный алюминий химическим способом.

Оксидная пленка тверже самого алюминия, а значит, защищает его от внешних воздействий. Износостойкость у деталей из алюминия с оксидной пленкой значительно выше. Кроме того, на покрытую поверхность гораздо лучше ложатся органические красители, следовательно, она имеет более пористую структуру, что повышает адгезию. А это очень важно для изделий с последующей декоративной обработкой.

Так, инженерные исследования и опыты привели к изобретению способа электрохимического образования оксидной пленки на поверхности алюминия и его сплавов, который получил название анодное оксидирование алюминия, – это ответ на вопрос «что такое анодирование».

Анодированный алюминий очень широко применяется в различных областях. Галантерейные изделия с декоративными покрытиями, металлические оконные и дверные рамы, детали морских кораблей и подводных аппаратов, авиационная промышленность, кухонная посуда, автомобильный тюнинг, строительные изделия из алюминиевого профиля – далеко не полный перечень.

Что такое анодирование

Как анодировать алюминий? Анодирование- это такой процесс, при котором получают слой оксидной пленки на поверхности алюминиевой детали. В электрохимическом процессе покрываемая деталь играет роль анода, поэтому процесс и называется анодированием. Самый распространенный и простой способ – в разбавленной серной кислоте под воздействием электрического тока. Концентрация кислоты до 20 %, сила постоянного тока 1,0 – 2,5 А/дм 2, переменного – 3,0 А/дм 2, температура раствора 20 – 22 °С.

Раз есть анод, должен быть катод. В специальной гальванической ванне, где происходит процесс анодирования, детали-аноды закреплены или подвешены посредине. По краям ванны размещаются катоды – пластины свинца или химически чистого алюминия, причем площадь поверхностей анодов должна примерно соответствовать площади катодов. Между катодами и анодами должен обязательно находиться свободный довольно широкий слой электролита.

Подвески, на которых крепятся покрываемые детали, желательно выполнять из того же материала, из которого изготовлены аноды. Не всегда это возможно, поэтому допускаются алюминиевые или дюралевые сплавы. В местах крепления анодов должен быть обеспечен плотный контакт. Места креплений остаются непокрытыми, поэтому для декоративных изделий эти места необходимо выбирать и оговаривать в технологическом процессе. Подвески не снимаются при промывке и последующем хроматировании, они так и остаются на деталях до окончания всего процесса.

Время зависит от размеров покрываемых деталей. Мелкие получают слой пленки 4–5 микрон уже через 15–20 минут, а более крупные висят в ванне до 1 часа.

После извлечения из анодной ванны детали промывают в проточной воде, затем нейтрализуют в отдельной ванне с 5-процентным раствором аммиака и снова промывают в водопроводной воде.

Пленка станет более прочной, если провести дополнительно финишную обработку. Лучше всего это сделать в растворе бихромата калия (хромпик) концентрацией примерно 40 г/л при температуре около 95 °С, в течение 10–30 минут. Детали в конце приобретают оригинальный зеленовато-желтый оттенок. Таким образом достигается анодная защита от коррозии.

Применение других электролитов для получения анодированного алюминия

Есть и другие электролиты для получения оксидной пленки на алюминии, основы процесса анодирования остаются те же, меняются лишь режимы тока, время процесса и свойства покрытия.

  • Щавелевокислый электролит. Это раствор щавелевой кислоты 40–60 г/л. В результате анодирования пленка выходит желтоватого цвета, имеет достаточную прочность и отличную пластичность. При изгибании покрытой поверхности слышен характерный треск пленки, но свойства она от этого не теряет. Недостатком является слабая пористость и ухудшенная адгезия по сравнению с сернокислым электролитом.
  • Ортофосфорный электролит. Раствор ортофосфорной кислоты 350–550 г/л. Получаемая пленка очень плохо окрашивается, зато отлично растворяется в никелевом и кислом медном электролите при осаждении этих металлов, то есть применяется в основном как промежуточный этап перед омеднением или никелированием.
  • Хромовый электролит. Раствор хромового ангидрида 30–35 г/л и борной кислоты 1–2 г/л. Полученная пленка имеет красивый серо-голубой цвет и похожа на эмалированную поверхность, процесс получил отсюда название эматалирования. В настоящее время эматалирование очень широко применяется и имеет ряд других вариантов состава электролита, на основе других кислот.
  • Смешанный органический электролит. Раствор содержит щавелевую, серную и сульфосалициловую кислоты. Цвет пленки отличается в зависимости от марки сплава анода, характеристики покрытия по прочности и износостойкости очень хорошие. Анодировать в данном электролите можно не менее успешно алюминиевые детали любого назначения.

Преимущества применения алюминиевого анодированного профиля

Анодированный алюминиевый профиль применяется для изготовления навесных вентилируемых фасадов, монтажных лестниц, поручней. Защитная пленка не только защищает сам металл, но и ваши руки от серой алюминиевой пыли. Женщинам интересно будет узнать, что алюминиевые вязальные спицы тоже анодируют, чтобы не пачкались ручки мастерицы. Но и в строительстве анодированный алюминий получил свое применение.

Анодирование алюминиевого профиля используют при монтаже навесных вентилируемых фасадов в высоко- агрессивных средах. Высоко- агрессивные среды- это приморские районы ( из-за высокого содержания солей в воздухе) или территории вблизи заводов. Города миллионники редко имеют высоко- агрессивную среду, чаще средне- агрессивную. Присвоение класса агрессивности происходит на уровне специальных служб сан-эпидемического надзора по согласованию с администрацией города – нужно искать в их постановлениях.

Еще одно важное преимущество – окраска анодированной поверхности. Наверное, это основной плюс описанного процесса. Появилась возможность декоративной обработки изготовленных алюминиевых изделий, что сразу принесло к большому распространению его применения.

Высокая износостойкость анодной пленки способствовала увеличению содержания анодированных алюминиевых деталей в общем объеме судостроительных и авиастроительных предприятий.

Фасады многих Олимпийских объектов в Сочи выполнены с помощью технологии Навесной Вентилируемый Фасад на алюминиевых анодированных системах.

Ссылка на основную публикацию
Adblock
detector