Алюминий 1561 свойства - GazSnabStroy.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Алюминий 1561 свойства

Алюминий “6061”

Алюминиевый спав 6061 – его состав, области применения, аналоги и отличные обозначения в промышленно развитых странах.

Чистый алюминий – металл достаточно мягкий – почти в три раза мягче меди, даже сравнительно толстые алюминиевые профили легко согнуть. А вот когда алюминий образует сплавы, его твердость возрастает в десятки раз.

Алюминий 6061 по ISO 209-1, он же АД33 по ГОСТ 4784-97 – алюминий-магний-кремниевый сплав.

  1. Al – 95.8-98.6%. Алюминий – элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов с атомным номером 13. Относится к группе лёгких металлов.
  2. Mg – 0,8-1,2%. Магний – основная добавка в алюминиевых сплавах шеститысячной серии, значительно повышает прочность без снижения пластичности – при увеличении концентрации на каждый процент предел прочности повышается на 30 Мпа, предел текучести – на 20. Также повышает свариваемость и коррозионную стойкость, однако, с ростом концентрации более 3% структура сплава становится менее стабильной, а при содержании магния более 6% стойкость к коррозии начинает уменьшаться.
  3. Si – 0.4-0.8%. Кремний вообще является наиболее используемой добавкой в литейных сплавах, в алюминиевых применяется как легирующий элемент. При концентрации 0,5-4% уменьшает склонность к трещинообразованию. В сочетании с магнием делает возможным термоуплотнение сплава.
  4. Fe – до 0,7%. Железо способствует высокой устойчивости и наследственности литой структуры алюминия и его сплавов, уменьшает прилипание к стенкам при литье в формы, однако, уменьшает электропроводность и химическую стойкость.
  5. Cu – 0.15-0.4%. Медь используется как легирующий элемент, при совместном введении с магнием, цинком и кремнием значительно увеличивает прочность.
  6. Cr – 0.04-0.35%. Хром вводят в сплавы для нейтрализации отрицательного влияния железа, а также для повышения прочностных характеристик материала и сварных соединений.
  7. Zn – до 0,25% – Цинк используется как легирующий элемент совместно с медью и магнием для увеличения прочности.
  8. Ti – до 0,15%. Титан применяется для измельчения зерна литого металла, а также значительно уменьшает склонность к трещинообразованию.
  9. Mn – до 0,15%. Марганец используется как легирующий элемент – повышается температура рекристаллизации, измельчается структура холоднодеформированного материала, повышаются прочностные свойства при комнатной температуре, а также значительно увеличивается жаропрочность.

Итак, у нас есть достаточно прочный сплав с хорошей пластичностью, возможностью термоуплотнения, высокой коррозионной стойкостью и вполне нормальной свариваемостью. Эти характеристики позволяют использовать алюминий 6061 в самом широком и разнообразном спектре.

Общее применение – для изготовления деталей средней прчности и высокой коррозионной стойкости, работающих в интервале температур от -70°C до +50°C, во влажной атмосфере и морской воде.

Более конкретные области применения.

  • В автомобилестроении США стойки кузова изготавливают из прессованных полуфабрикатов сплавов 6061.
  • Весьма распространенное применение – рамы велосипедов, в том числе BMX.
  • В авиации сплав 6061 применяется в малонагруженных деталях, а также в гидро-, масло- и топливных системах.
  • В железнодорожном транспорте США из сплава 6061 и других сплавов алюминия изготавливают подвижной состав с получением оптимальных прочностных характеристик и высокой коррозионной стойкости сварных элементов.
  • В строительной индустрии на соответствующие строительные конструкции расходуется больше алюминия, чем в любой другой отрасли. Сплав применяется для клееных и клепаных конструкций сложной формы, а также для конструкций, где требуется повышенный предел текучести, и для прессованных изделий сложной формы (полые профили).
  • В нефтедобывающей промышленности США из труб сплава 6061 собирают морские буровые платформы.
  • В химической промышленности этот сплав используется для изготовления тары, цистерн и пр. оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов , а также для изготовления емкостей для хранения нитрата аммония.
  • Аэрокосмическая отрасль

Металломатричные композиты (ММК) со сплавом 6061 успешно применялись для изготовления корпусов космических челноков Space Shuttle (в качестве набора корпуса).

На основе ММК из диффузионно связанных слоев графитового волокна с этим сплавом сделана телескопическая балка антенны космического телескопа Hubble, длинной 3.6 м.

Виды и свойства алюминиевых сплавов

Алюминиевые сплавы используются для изготовления разных предметов. Чистый металл не имеет достаточной механической прочности, устойчивости к коррозии. Поэтому металл непригоден для решения простейших бытовых задач. Комбинация с легирующими элементами позволяет получить вещество с другими свойствами.

Используются технологии, которые помогают повысить прочность, твердость, устойчивость к высокой температуре и коррозии. Некоторые добавки помогают уменьшить электропроводность, повысить плотность. Марганец и магний не влияют на эти характеристики.

Физические параметры алюминиевых сплавов

Перечислим физические свойства нескольких сплавов на основе алюминия:

  • Соединение АД1 – технически чистое вещество, в котором присутствует 0,7% примесей. Добавки увеличивают устойчивость к воздействию внешних факторов, уменьшают пластичность и электропроводность вещества. Технический алюминий устойчив к химическому воздействию, превосходит по этим параметрам другие вещества. На поверхности материала присутствует тонкая оксидная прослойка. Низкое содержание примесей положительно воздействует на устойчивость к коррозии. Магний и марганец не изменяют эти свойства. Правка методом растяжения – заключительная процедура обработки детали из вещества марки АД1. Для этого используются роликоправильные машины. Марганец и магний помогают создавать крепкие детали, но уменьшает их пластичность.
  • Марка АМц устойчива к коррозии. Детали прекрасно поддаются обработке газовой, аргонной, атомно-водородной и контактной сваркой. Материал прекрасно деформируется при любой температуре. После термообработки прочность не повышается. Изготавливаются детали в отожженном или горячем прессованном виде.
  • AMr3, Amr2. Такие соединения не ржавеют, хорошо подвергаются обработке точечной, газовой, роликовой сваркой. После горячей деформации охладить сплав алюминия можно на воздухе. После термообработки характеристики прочности не повышаются. При изготовлении деталей используют два режима термообработки: низкий 273-350 градусов и высокий 360-420 градусов.
  • АД31 отличается пластичностью, хорошей устойчивостью к окислению. После сварки материал не становится более подверженным ржавчине. Прочность повышается после термообработки.

Виды алюминиевых сплавов

Алюминий, а также сплавы на его основе создаются из металлической руды, которая делится на несколько видов:

  • Первичная.
  • Техническая.
  • Литейная.
  • Деформируемая.
  • Антифрикционная.

По методу использования вещества делятся на деформируемые и литейные. Деформированные отличаются повышенной пластичностью после термообработки. Литейные могут хорошо заполнять формы для отливки.

Пластичные вещества отличаются устойчивостью к коррозии, хорошей свариваемостью. Прочность сплава из алюминия зависит от количества используемой меди. Если добавляется 6% вещества для легирования, устойчивость к механическим воздействиям увеличиваются приблизительно на 30 МПа, текучесть повышается на 20 МПа.

Показатель относительного удлинения немного снижается в таких условиях, но не превышает пределы 35%. Если количество магния превышает 6%, структура материала становится нестабильной, уменьшается устойчивость к коррозии. Чтобы улучшить характеристики, в соединение добавляют такие элементы:

Добавление меди и железа плохо сказываются на состоянии алюминиево-магниевых соединений. Показатель свариваемости и стойкости к воздействию ржавчины ухудшается.

Добавление марганца позволяет повышать пластичность. Для создания мелкозернистой структуры проводится легирование с помощью титана. Чтобы состояние вещества было стабильным, добавляется марганец. Кремний и железо являются главными примесями марганцевых соединений.

Добавки из алюминия, меди, кремния применяются при производстве втулочных подшипников, блоков цилиндров. Из-за твердой поверхности приработка требует продолжительных усилий.

После легирования медью повышается термостойкость. Даже низкоуглеродистая сталь не так устойчива к температурному воздействию. Такой продукт неустойчив к воздействию коррозии, поэтому требует обработки и полимеризации. Алюминиево-медное соединение модифицируется с помощью таких материалов:

Магний сильно повышает прочность металла, придаёт текучесть. Жаропрочность соединения увеличивается после добавления никеля и железа. Стимулируется процесс искусственного старения.

Добавление кремния помогает получить вещество, которое называется силумином. Качественные характеристики соединения повышаются небольшим количеством натрия и никеля. Такие материалы используются для декоративного литья, производства корпусов механизмов и деталей бытовой техники. Они применяются в таких отраслях, благодаря хорошим литейным характеристикам.

Алюминий, магний и цинк удобно обрабатывать, такой материал отличается устойчивостью к механическим воздействиям. Эти характеристики обеспечивает хорошая растворимость цинка и магния. Под воздействием холода такое свойство заметно снижается. Материал неустойчив к коррозии, поэтому требуется дополнительное легирование с помощью меди.

Марки алюминиевых сплавов

Различают три вида маркировки:

  • Буквенно-цифровая.
  • Обычная цифровая.
  • Международный вариант.

Основной материал в сплаве на основе алюминия отмечается первой цифрой в соответствии с ГОСТом. Второе числовое обозначение определяет легирующую систему, которая использовалась. Дополнительные символы указывают на разновидность модификации.

Что такое алюминиевый сплав?

Материал добывают из бокситовой руды. Залежи такой породы есть в России, Америке, Франции и других странах. Алюминий и некоторые его сплавы отличаются мягкостью, устойчивостью к коррозии. Температура плавления составляет примерно 700 градусов. Плотность 2,7 г на кв. см. Вещество прекрасно проводит электричество и тепло, взаимодействует с кислородом. Показатель упругости – 7000 Мпа, прочность – 150 МПа. При использовании некоторых добавок понижается устойчивость к коррозии. Это происходит по причине повреждения оксидной пленки.

Влияние алюминия на свойства стали. Часть 2

В предыдущей публикации мы рассмотрели влияние некоторых химических элементов на свойства стали, а именно влияние углерода, кремния, марганца, серы, фосфора.

В данной статье мы рассмотрим такой элемент, как алюминий, и то, как его наличие отражается на свойствах стали.

Алюминий (Al) – серебристо-белый активный металл. Температура плавления 657 °С, температура кипения 1800 °С, плотность – 2,6989 г/см3.

Основные свойства

Устойчивость к коррозии

При соприкосновении с кислородом “чистый” алюминий становится пассивным и образует на своей поверхности тонкую пленку (оксид алюминия), благодаря которой предотвращается образование коррозии, даже в агрессивной среде. Устойчивость Al к коррозии присутствует и при взаимодействии с паром и водой (пресной). Для эксплуатации в соленой воде в алюминий добавляют магний и кремний.

Он растворяется в едких щелочах, соляной и серной кислотах.

Алюминий обладает высокой теплопроводностью и электропроводностью. Благодаря таким свойствам его применяются для изготовления электрических проводов и кабеля.

Раскисление алюминием

Раскисление – снижение содержания кислорода в металле или связывание его в прочные соединения.

Алюминий является сильным раскислителем. Он широко применяется при производстве спокойной стали, да бы избежать образования пористой структуры слитка.

Раскисление производится на этапе выплавки стали, методом введения в металл алюминиевой проволоки, слитков или гранул.

Читайте также:  Алюминий а5 характеристики

При высоких температурах он хорошо сплавляется с металлами, образуя тем самым прочные, но легкие сплавы.

Алюминий используют с целью удаления кислорода и азота из стали после продувки, что способствует уменьшению старения.

Он способствует удалению кислорода из стали, что так же увеличивает текучесть и ударную вязкость стали.

Наличие Al влияет на размер зерен (они становятся меньше), и придает повышенную жаростойкость. Благодаря этим свойствам его широко применяют при изготовлении азотированной стали, как добавку в ферритную жароустойчивую сталь. Получение стали с мелким зерном, за счет использования алюминия – обеспечивает допустимые показатели пластичности и вязкости.

Стоит отметить, что Al обладает способностью сильно повышать значение напряженности магнитного поля, которое влияет на характеристики размагничивания ферромагнитного и ферримагнитного веществ, поэтому его применяют в качестве легирующего элемента в магнитотвердых сплавах железа, никеля, кобальта, алюминия.

Негативные свойства

Негативными факторами влияния алюминия на сталь считается:

  • снижение показателей текучести стали и вероятность (на машинах непрерывной разливки стали) затягивания сталевыпускного отверстия.
  • образование сложных неметаллических включений, при соединении алюминия с кислородом, Al2O3 -типа корунд, который является концентратором напряжений при последующей переработке в метизном производстве.

Т.е. существует вероятность образования оксидов алюминия, которые имеют остроугольную форму и могут быть причиной надрывов (например, при волочении катанки).

Данные факторы могут частично нейтрализоваться добавлением кальциевой проволоки (FeCa).

В заключении

В отличии от углерода, серы, фосфора, алюминий не оказывает такого явного влияния на механические характеристики стали, однако содержание алюминия менее определенного уровня ведет к повышению физических и механических свойств, и в тоже время, если алюминия менее 0,002 % – свойства ухудшаются. При содержании в легированной алюминием стали 0,02-0,7% – подавляется процесс старения стали.

Подведя итоги всего сказанного, отметим, что главные свойства Al:

  • хорошее раскисление стали;
  • нейтрализация вредного влияния фосфора;
  • повышение ударной вязкости стали.

Содержание алюминия менее определенного уровня ведет к повышению физических и механических свойств, и в тоже время, если алюминия менее 0,002 % – свойства ухудшаются.

Классификация алюминиевых сплавов.

Алюминиевые сплавы имеют более широкое применение в качестве конструкционного материала, чем технический алюминий. Основными легирующими элементами алюминиевых сплавов являются Си, Zn, Mg, Мп, Si, Ni, Fe. Эти элементы образуют с алюминием твердые растворы ограниченной растворимости, формируют упрочняющие зоны и промежуточные фазы с алюминием и между собой — Ф (CuAl2, Mg2Si, Al2CuMg, Al6CuMg4 и др.).

Мп и Mg оказывают положительное влияние на коррозионную стойкость, однако снижают тепло- и электропроводность алюминиевых сплавов. В литейных сплавах основным легирующим элементом выступает кремний, образующий с алюминием эвтектику. Ni, Ti, Cr, Fc образуют стабильные сложнолстироваиныс упрочняющие фазы, тормозят диффузионные процессы и тем самым повышают жаропрочность алюминиевых сплавов. Литий в сплавах на основе алюминия повышает их модуль упругости. Алюминиевые сплавы классифицируют по технологии изготовления полуфабрикатов и изделий из них, по способу упрочняться термической обработкой и свойствам (табл. 9.3).

Классификация алюминиевых сплавов

Упрочня- емость/ нсупрочня- емость (+/-) термической обработкой

Основные характеристики группы сплавов

Коррозионностойкие, повышенной пластич- ности

Пластичные при комнатной температуре

Малой плотности, высокомодульные

Ковочные, пластичные при повышенных температурах

АК9ч (АЛ4), АК7ч (АЛ9), АК8л (АЛ34)

Высокопрочные и жаро- прочные

Высокомодульные с пониженной плотностью

С низким коэффициентом л и ней ного рас ш и ре н и я

Упрочня- емость/ неупрочня- емость (+/ – ) термической обработкой

Основные характеристики группы сплавов

2/ств достигает 0,9—0,95), в то время как пластичность, вязкость, сопротивление хрупкому разрушению и коррозии под напряжением снижаются.

Эффект старения отмечают и применяют не только в системах цветных сплавов на основе алюминия, меди, магния, титана, но и в сплавах никеля и железа.

Для сплавов Д1, Д19 температура нагрева под закалку близка к температуре плавления эвтектик, по ниже их, и равна 505°С, а для сплавов Д16, ВД17, Д18 — 500°С. В закаленном состоянии дуралю- мины (за исключением Д18) интенсивно упрочняются (временное сопротивление разрыву после естественного старения в течение 4 суток составляет 450 МПа, пластичность — 18%). Искусственному старению подвергают изделия из сплавов Д16, Д19, работающие при 125—200°С. Режим искусственного старения закаленного сплава Д16 — 190°С, продолжительность 8—12 ч. В результате искусственного старения прочность дуралюмина Д16 мало отличается от прочности в состоянии после естественного старения, но при этом повышается предел текучести и снижается пластичность.

Дуралюмины отличаются пониженной коррозионной стойкостью во влажном воздухе, речной и морской воде, нуждаются в средствах защиты от коррозии. Дуралюминиевые листы подвергают плакированию, а трубы и профили — анодной поляризации. Плакирование заключается в горячей прокатке листов дуралюмина, покрытых чистым алюминием (А7, А8). При этом алюминий сваривается сосновой и надежно защищает дуралюминиевый лист от коррозии. Толщина слоя алюминия обычно составляет 2—5% от толщины листа. Анодная поляризация в 10%-ном растворе серной кислоты полуфабрикатов из дуралюмина вызывает выделение кислорода и образование на их поверхности защитной оксидной (AI2O3) пленки, предохраняющей сплав от коррозии.

Дуралюмины хорошо свариваются точечной сваркой и нс свариваются сваркой плавлением из-за образования трещин, удовлетворительно обрабатываются резанием в закаленном и состаренном состояниях и хуже — в отожженном.

Наиболее прочный из дуралюминов сплав Д16 идет на изготовление обшивки лонжеронов, шпангоутов, стрингеров, тяг управления самолетов, силовых каркасов, кузовов автомобилей. В свежезакаленном состоянии из сплавов Д16 и Д1 изготавливают заклепки. Один из основных заклепочных сплавов — сплав Д18 в закаленном и естественно состаренном состоянии.

Высокопрочные сплавы В93, В95, В96Ц1 (см. табл. 9.5) системы А1—Zn—Mg—Си имеют повышенный предел прочности — 550—700 МПа. В качестве добавок содержат марганец, хром и цирконий, обеспечивающие неустойчивость твердого раствора, ускоряющие его распад и повышающие эффект старения. Упрочняющими фазами в сплавах являются MgZn2, Al2Mg3Zn3, Al2CuMg.

Высокопрочные алюминиевые сплавы подвергают закалке и искусственному старению. Сплавы закаливают с 460—470°С в холодной или горячей воде для исключения растрескивания крупногабаритных штамповок или поковок. При искусственном старении пересыщенный твердый раствор распадается с образованием дисперсных частиц упрочняющих фаз. Максимальная прочность сплавов отмечается при обработке по режиму Т1 (закалка; искусственное старение 120°С, 3—10 ч). После такой обработки сплавы имеют пониженную пластичность (7—10%) и склонны к коррозии под напряжением из-за неравномерного распада пересыщенного твердого раствора.

Старение высокопрочных сплавов по режимам Т2 и ТЗ при повышенных температурах (160—180°С) и продолжительности (10— 30 ч) увеличивает их вязкость, пластичность и сопротивление кор-

розни под напряжением. Чаще высокопрочные сплавы подвергают двухступенчатому старению при 100— 120°С, 3—10 ч (первая ступень) и 165— 185°С, 10—30 ч (вторая ступень). Первая ступень старения обеспечивает образование и равномерное распределение зон ГП. Па второй стадии при повышенных температурах и значительной продолжительности из зон ГП формируются и коагулируют частицы упрочняющих фаз. В результате двухступенчатого старения сплав В95пч имеет он = 540—590 МПа, а9= 410—470 МПа, 5 = = 10-13%.

Сплав В95 из всех высокопрочных сплавов является наиболее универсальным конструкционным материалом и находит широкое применение в авиации: для тяжелонагруженных деталей конструкций, работающих в основном в условиях сжатия (облицовка, шпангоуты, стрингеры, лонжероны самолетов).

Сплав В96Ц содержит повышенное количество основных легирующих элементов (цинка, магния, меди) и является самым прочным их всех деформируемых алюминиевых сплавов. Однако но сравнению со сплавом 1395 сплав В96Ц имеет пониженную пластичность, коррозионную стойкость. Сплав чувствителен к коррозии и различным концентраторам напряжений. Из сплава В96Ц методами горячего деформирования производят полуфабрикаты в виде труб, профилей различного сечения, поковок. Высокопрочные сплавы имеют удовлетворительную свариваемость при контактной сварке и плохую при сварке плавлением. Рабочая температура высокопрочных сплавов не превышает 120°С, так как при более высоких температурах отмечается резкое снижение их прочности, более интенсивное, чем у дуралюминов.

Высокомодульный сплав 1420 системы Al—Mg— Li обладает пониженной плотностью (2,5 г/см 3 ) и повышенным модулем упругости (75 000 МПа), что на 4% превышает модуль упругости сплава Д16. Сплав 1420 сваривается всеми видами сварки и обладает высокими коррозионными свойствами, близкими к характеристикам сплава АМгб.

Сплав 1420 подвергают закалке с 450°С (охлаждение на воздухе) и последующему искусственному старению при 120°С в течение 12—24 ч.

В результате закалки структура сплава состоит из пересыщенного твердого раствора магния и лития в алюминии. При искусственном старении образование зон ГП нс наблюдается. Упрочнение связано с выделением упрочняющей фазы AlLi, что не приводит к обеднению матричного твердого раствора магнием.

Сплав 1420 используют для замены в аэрокосмических изделиях дуралюминов, тем самым снижают их массу на 10—15%.

Ковочные сплавы АК6, АК8 (см. табл. 9.5) системы Al—Mg— Si—Си отличаются повышенной пластичностью при горячем деформировании и идут на изготовление поковок и штамповок. Ковка и штамповка сплавов производятся при температурах 450—470°С. В структуре сплавов наряду с твердым раствором присутствуют фазы CuAl2, CuMgAl2 и Mg2Si. Сплавы АК6 и АК8 подвергают закалке и искусственному старению (режим Т1). Температура закалки сплавов АК6 и АК8 равна 520 и 500°С соответственно. Искусственное старение сплавов проводят по режиму 160—170°С, 12—15 ч. В результате такой обработки сплав АК8, содержащий 4,3% меди, имеет более высокие показатели прочности (см. табл. 9.5), чем сплав ЛК6, содержащий 2,2% меди. Для сплава ЛК6 характерно сочетание хорошей пластичности в горячем и холодном состояниях и достаточно высокой прочности. По вязкости разрушения сплав АК6 превосходит сплав АК8. Сплавы удовлетворительно свариваются, хорошо обрабатываются резанием. Сплавы АК6 и АК8 склонны к коррозии под напряжением и межкристаллитной коррозией. Коррозионную стойкость сплавов повышают электрохимическим оксидированием (анодированием) или путем нанесения лакокрасочных покрытий.

Сплав АК6 используют для изготовления средненагруженных деталей сложной формы (фитинги, крыльчатки, крепежные детали, подмоторные рамы). Сплав АК8, менее технологичный, чем АК6, рекомендуют для изготовления тяжслонагружснных деталей (подмоторные рамы, стыковые узлы, лонжероны, лопасти винтов вертолетов).

Читайте также:  Травление алюминия щелочью

Жаропрочные алюминиевые сплавы Д20, 1201 (см. табл. 9.5) системы А1—Си—Мп и АК4-1 системы А1—Си—Mg—Fe—Ni способны работать при температурах до 300°С. В результате легирования сплавов цирконием, ванадием, титаном, железом и никелем тормозятся диффузионные процессы, образуются мелкодисперсные упрочняющие фазы Al12MnCu в сплавах Д20, 1201, Al9FeNi — в сплаве АК4-1, устойчивые к коагуляции при нагреве. Сплавы применяются в состоянии после закалки с температурой 535°С и искусственного старения при температуре 190°С в течение 10—18 ч. При комнатной температуре прочность жаропрочных алюминиевых сплавов мало отличается от прочности дуралюмина (420—450 МПа). При 300°С сплав Д20 обнаруживает более высокую жаропрочность ( а ню = 80 МПа) по сравнению со сплавом АК4-1, для которого afoo = = 45 МПа. Сплавы Д20, 1201 свариваются хорошо, а сплав АК4-1 удовлетворительно аргоно-дуговой и контактной сварками. Коррозионная стойкость сплавов невысокая, и для защиты от коррозии на поверхность деталей из них наносят лакокрасочные покрытия или анодируют детали. Особенно тщательно необходимо защищать сварные соединения. Из сплавов АК4-1, Д20, 1201 изготавливают полуфабрикаты в виде листов, плит, профилей, используемых для деталей и сварных изделий: поршней двигателей, головок

цилиндров, крыльчаток, сварных емкостей, лопаток и дисков осевых компрессоров турбовинтовых двигателей, обшивок сверхзвуковых самолетов.

Литейные алюминиевые сплавы. Литейные алюминиевые сплавы наряду с высокими литейными свойствами (жидкотекучестью, низкой усадкой, малой склонностью к образованию горячих трещин и пор) обладают оптимальными механическими свойствами и сопротивлением коррозии в различных агрессивных средах. Этим требованиям в большей степени отвечают сплавы систем А1—Si, Al—Си, А1—Mg, в структуре которых присутствует эвтектика. Дополнительное легирование сплавов системы А1—Si медью и марганцем, системы А1—Си марганцем, никелем, хромом, системы Al—Mg цинком позволяет улучшать их механические свойства (табл. 9.6) и повысить эксплуатационные характеристики.

Сплавы системы Al—Si— Mg АК9ч (АЛ4), АК8л (АЛ34), АК7ч (АЛ9), именуемые силуминами, получили наиболее широкое рас-

Химический состав и механические свойства литейных алюминиевых сплавов

Учебные материалы

Алюминий — металл серебристо-белого цвета, порядковый номер в Периодической системе Д.И. Менделеева — 13, атомный вес 26,97. Кристаллическая решетка ГЦК с периодом а = 4,0414 Å, атомный радиус 1,43 Å. Плотность — 2,7 г/см 3 , температура плавления 660 0 С. Имеет высокую тепло- и электропроводность. Удельное электросопротивление 0,027 мкОм×м. Предел прочности sв = 100 МПа, относительное сужение y = 40 %.

В зависимости от чистоты различают алюминий особой чистоты А999 (99,999 % Аl), высокой чистоты: А995,А99, А97, А95 и технической чистоты: А85, А8, А7, А6, А5 (99,5 % Аl), АО (99,0 % Аl).

Алюминий обладает высокой коррозионной стойкостью вследствие образования на его поверхности тонкой прочной пленки Аl2О3. Алюминий легко обрабатывается давлением, обработка резанием затруднена, сваривается всеми видами сварки.

Ввиду низкой прочности алюминий применяют для ненагруженных деталей и элементов конструкций, когда от металла требуется легкость, высокая электропроводность. Из него изготовляют трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду теплообменники, провода, кабели. Алюминий имеет большую усадку затвердевания (6 %).

Как конструкционный материал значительно чаще применяются алюминиевые сплавы. Они характеризуются высокой удельной прочностью, способностью сопротивляться инерционным и динамическим нагрузкам, хорошей технологичностью. Предел прочности достигает 500…700 МПа. Большинство обладают высокой коррозионной стойкостью (за исключением сплавов с медью). Основными легирующими элементами алюминиевых сплавов являются Сu, Mg, Si, Mn, Zn, реже Li, Ni, Ti. Многие образуют с алюминием твердые растворы ограниченной переменной растворимости и промежуточные фазы СuAl2, Mg2Si и др. Это дает возможность подвергать сплавы упрочняющей термической обработке. Она состоит из закалки на пересыщенный твердый раствор и естественного или искусственного старения.

По технологическому признаку алюминиевые сплавы подразделяются на две группы (рисунок 52): деформируемые, литейные.

  1. деформируемые: а — не упрочняемые ТО; б — упрочняемые ТО;
  2. литейные

Рисунок 52 — Диаграмма состояния сплавов алюминий — легирующий элемент

Сплавы левее точки F имеют структуру однофазного a — твердого раствора, который имеет высокую пластичность и не упрочняются термической обработкой. Упрочнить эти сплавы можно холодной пластической деформацией (наклепом). На участке FD’ сплавы имеют предельную растворимость легирующего элемента в алюминии и поэтому упрочняются термической обработкой. Сплавы правее точки D’ имеют в структуре эвтектику, которая придает сплавам высокую жидкотекучесть. Поэтому эти сплавы относятся к литейным.

Старение закаленных сплавов. После закалки алюминиевые сплавы подвергаются старению, которое приводит к дополнительному повышению прочности сплава при некотором снижении пластичности и вязкости.

В зависимости от условий проведения, различают два вида старения:

  1. естественное, при котором сплав выдерживают при нормальной температуре несколько суток;
  2. искусственное, при котором сплав выдерживается при повышенной температуре в течение 10…24 ч.

В процессе старения происходит распад пересыщенного твердого раствора, в решетке которого атомы меди располагаются статистически равномерно. В зависимости от температуры и продолжительности, старение протекает в несколько стадий.

Так, например, в сплавах Аl — Сu при естественном или низкотемпературном искусственном старении (ниже 100…150 0 С) образуются зоны Гинье-Престона 1 (ГП-1). На начальной стадии в пересыщенном a — твердом растворе образуются объемы (сегрегации), обогащенные атомами меди. Они представляют собой пластинчатые или дисковые образования диаметром 4…6 нм и толщиной несколько атомных слоев.

При более высоких температурах нагрева образуются крупные зоны ГП-2. Выдержка в течение нескольких часов приводит к образованию в зонах ГП-2 дисперсных частиц q — фазы (СuAl2). Образование зон ГП-1, ГП-2 и q- фазы приводит к повышению прочности и твердости закаленных алюминиевых сплавов.

Деформируемые сплавы, не упрочняемые термообработкой. Эти сплавы отличаются высокой пластичностью, хорошей свариваемостью и высокой коррозионной стойкостью. Пластическая деформация упрочняет сплавы почти в 2 раза.

К этой группе сплавов относятся марки АМц (1,1…1,6 % Мn), АМг2, АМг3, АМг5, АМг6 (цифра показывает содержание магния в процентах).

Они применяются для сварных элементов конструкций, испытывающих сравнительно небольшие нагрузки и требующие высокого сопротивления коррозии. Из сплавов АМц, АМг2, АМг3 изготовляют емкости для хранения нефтепродуктов, трубопроводы для масла и бензина, палубные надстройки, в строительстве — витражи, перегородки, двери, оконные рамы и др. Сплавы АМг5, АМг6 применяются для средненагруженных деталей и конструкций: рамы и кузова вагонов, перегородки зданий переборки судов, кабины лифтов.

Деформируемые сплавы, упрочняемые термообработкой. Наиболее распространенными представителями группы алюминиевых сплавов, применяемыми в деформированном виде и упрочняемыми термической обработкой, являются дуралюмины (от французского dur- твердый). К ним относятся сплавы системы Al — Cu – Mg — Mn. Типичными дуралюминами являются марки Д1 и Д16. Их химический состав приведен в таблице 18.

Таблица 18 — Химический состав дуралюминов, %

МаркаCuMnMgSiFe
Д1
Д16
3,8…4,8
3,8…4,5
0,4…0,8
0,3…0,9
0,4…0,8
1,2…1,8
0 С, а Д16 — до 485…503 0 С. Нагрев до более высоких температур вызывает пережог. Охлаждение производится в во де.

Дуралюмины после закалки подвергают естественному старению, т.к. при этом обеспечивается более высокая коррозионная стойкость. Время старения 4…5 суток. Иногда применяют искусственное старение при температуре 185…195 0 С. Из сплава Д16 изготовляют обшивки, силовые каркасы, строительные конструкции, кузова грузовых автомобилей, шпангоуты, стрингера, лонжероны самолетов и т.д.

Сплавы авиаль (АВ) уступают дуралюминам по прочности, но обладают лучшей пластичностью в холодном и горячем состояниях, хорошо свариваются и сопротивляются коррозии, имеют высокий предел усталости. Упрочняющей фазой является соединение Мg2Si.

Авиаль закаливается при 515…525 0 С с охлаждением в воде, а затем подвергается естественному старению (АВТ) или искусственному при температуре 160 0 С в течение 12 часов (АВТ1). Изготовляют листы, трубы, лопасти винтов вертолетов, кованые детали двигателей, рамы, двери.

Высокопрочные алюминиевые сплавы. Прочность этих сплавов достигает 550…700 МПа, но при меньшей пластичности, чем у дуралюминов. Они, кроме Сu и Mg содержат Zn. К ним относятся сплавы В95, В96. Упрочняющими фазами являются MgZn2, Al3Mg3Zn3, Al2CuMg. С увеличением содержания цинка прочность повышается, но снижается пластичность и коррозионная стойкость.

Сплавы закаливают при 465…475 0 С с охлаждением в воде и подвергают искусственному старению при 135…145 0 С в течение 16 ч. Они более чувствительны к концентратам напряжений и имеют пониженную коррозионную стойкость под напряжением. Применяются там же, где и дуралюмины.

Ковочные алюминиевые сплавы отличаются высокой пластичностью при температурах ковки и штамповки (450…475 0 С) и удовлетворительными литейными свойствами. Закалка проводится при 515…525 0 С с охлаждением в воде, старение при 150…160 0 С в течение 4…12 ч. Упрочняющими фазами являются Mg2Si, CuAl2.

Сплав АК6 используют для деталей сложной формы и средней прочности (sв = 360 МПа) — крыльчатки, качалки, крепежные детали.

Сплав АК8 с повышенным содержанием Сu хуже обрабатываются давлением, но более прочный и применяется для изготовления подмоторных рам, лопастей винтов вертолетов и др.

Жаропрочные сплавы. Эти сплавы применяются для деталей, работающих до 300 0 С (поршни, головки цилиндров, обшивка самолетов, лопатки и диски осевых компрессоров, крыльчатки и т.д.). Эти сплавы дополнительно легируют Fe, Ni, Ti.

Сплав АК4-1 закаливают при 525…535 0 С, а сплав Д20 — при 535 0 С в воде и подвергают старению при 200…220 0 С. Упрочняющими фазами являются СuAl2, Mg2Si, Al2CuMg, Al9FeNi. При частичном распаде твердого раствора они выделяются в виде дисперсных частиц, устойчивых к коагуляции, что обеспечивает повышенную жаропрочность.

Литейные алюминиевые сплавы. Сплавы для фасонного литья должны обладать высокой жидкотекучестью, сравнительно небольшой усадкой, малой склонностью к образованию горячих трещин и пористости в сочетании с хорошими механическими свойствами, сопротивлением коррозии.

Высокие литейные свойства имеют сплавы, содержащие в структуре эвтектику. Содержание легирующих элементов в этих сплавах больше предельной растворимости их в алюминии и больше, чем в деформируемых. Чаще применяют сплавы Al — Si, Al — Cu, Al — Mg. Для измельчения зерна, а следовательно улучшения механических свойств, в сплавы вводят модифицирующие добавки (Ti, Zr, B, V, Na и др.). Многие отливки из алюминиевых сплавов подвергают термической обработке. Например: отжиг при 300 0 С в течение 5… 10 ч; закалка и естественное старение tзак = 510…520 0 С и охлаждение в горячей воде (40…100 0 С) выдержка до 20 часов.

Сплавы Al — Si (силумины) содержат много эвтектики, поэтому обладают высокими литейными свойствами отливки, более плотные. К ним относятся сплавы АЛ2, АЛ4, АЛ9.

АЛ2 содержит 10-13% Si и является эвтектическим сплавом, упрочняющей термической обработке не подвергается.

АЛ4, АЛ9 — доэвтектические и дополнительно легированы Мg. Могут упрочняться термообработкой. Упрочняющей фазой служат Mg2Si. Эти сплавы применяют для изготовления крупных нагруженных деталей: корпуса компрессоров, картеры и блоки цилиндров двигателей.

Сплавы Al — Cu. Эти сплавы (АЛ7, АЛ19) имеют более низкие литейные свойства, чем силумины. Поэтому их применяют, как правило, для отливок небольших деталей простой формы (арматура, кронштейны и т.д.). Имеют большую усадку, склонность к образованию горячих трещин и к хрупкому разрушению.

Сплавы Аl — Mg. Эти сплавы (АЛ8, АЛ27) имеют низкие литейные свойства, так как не содержат эвтектики. Характерной особенностью этих сплавов является хорошая коррозионная стойкость, повышенные механические свойства и обрабатываемость резанием. Они предназначены для отливок, работающих во влажной атмосфере. Сплавы марок АЛ13 и АЛ22 имеют более высокие литейные свойства в результате образования тройной эвтектики.

Жаропрочные сплавы. Наибольшее применение получил сплав АЛ1, из которого изготовляют поршни, головки цилиндров и другие детали, работающие при температуре 275…300 0 С. Структура литого сплава АЛ1 состоит из a- твердого раствора, содержащего Cu, Mg, Ni, и избыточных фаз Al2CuMg, Al6CuNi.

Более жаропрочными являются сплавы АЛ19 и АЛ33. Это достигается добавками в сплавы Mn, Ti, Ni, Zn, Ce и образованием нерастворимых интерметаллидных фаз Al6Cu3, Al2Ce, Al2Zr и др.

Для крупногабаритных деталей работающих при 300…350 0 С применяют сплав АЛ21.

Алюминий-литиевые сплавы (стр. 1 из 2)

Работу напечатала студентка V курса

группы керамика Петракова Екатерина.

Алюминий-литиевые сплавы являются новым классом широко известных алюминиевых систем и характеризуются прекрасным сочетанием механических свойств: малой плотностью, повышенным модулем упругости и достаточно высокой прочностью. Это позволяет создавать аэрокосмическую технику с меньшей массой, что даёт возможность экономии горючего, увеличения грузоподъемности и улучшения других характеристик летательных аппаратов.

Алюминиевые сплавы, легированные литием, относятся к стареющим системам и отличаются сложностью фазовых и структурных превращений в процессе их термообработки. Эти изменения оказывают сильное влияние на характеристики трещиностойкости, вязкости разрушения, коррозионной стойкости и сопротивления циклическим нагрузкам. Поэтому их понимание представляет большое научное и практическое значение.

Перечислю кратко основные свойства сплавов Al-Li. Увеличение содержания лития уменьшает плотность алюминия. Добавки лития в пределах твердого раствора приводят к непрерывному увеличению удельного сопротивления. Модуль упругости алюминия возрастает с увеличением содержания лития. При максимальной растворимости лития в твердом растворе модуль упругости составляет 8000кГ/мм 2 . Увеличение содержания лития приводит к повышению прочностных характеристик алюминия. При содержании лития до 2% прочность сплавов возрастает без снижения пластичности, при дальнейшем увеличении содержания лития пластичность резко снижается. Литий при концентрациях до 0,8% сообщает алюминиевым сплавам повышенную стойкость к коррозии, более высокую, чем у чистого алюминия.

В данной работе я хочу остановиться на рассмотрении промышленных алюминий-литиевых сплавах. Рассмотрим сначала их общую характеристику.

Повышенный интерес к легированию алюминиевых сплавов литием, самым легким из металлов с плотностью

0,54 г/см 3 , обусловлен тем, что каждый процент лития снижает плотность алюминия на 3%, повышает модуль упругости на 6% и обеспечивает в сплавах значительный эффект упрочнения после закалки и искусственного старения.

К настоящему времени создан целый класс сплавов пониженной плотности различного назначения;

сплавы для изготовления сварных конструкций;

высокопрочные сплавы для замены сплавов системы Al-Zn-Mg-Cu типа В95;

сплавы с высокой трещиностойкостью для замены сплавов типа Д16 системы Al-Cu-Mg;

На базе системы Al-Mg-Li разработан оригинальный сплав 1420. Он самый легкий (плотность 2,47г/см 3 ), коррозионностойкий, свариваемый,имеет сравнительно высокую (по сравнению с предыдущими сплавами) прочность и повышенный модуль упругости (7500 кГ/мм 2 ).Сплав закаливается как при охлаждении в воде, так и на воздухе. Механические свойства сплава в процессе старения при 20 0 С не изменяются, что позволяет легко производить всевозможные технологические операции по деформации в закаленном состоянии. Этот сплав относится к среднепрочным и широко применяется в сварных конструкциях, обеспечивая снижение массы до 20-25% при повышении жесткости до 6%. Также из этого сплава изготовляют плиты, панели, профили, прутки, листы (в состоянии Т1 (см. ниже)).

С целью повышения прочностных свойств, особенно предела текучести, предложены модификации сплава 1420 (1421 и 1423), которые дополнительно легированы скандием и различаются лишь содержанием магния.

Высокопрочные сплавы 1450 и1451 системы Al-Cu-Li характеризуются высокой прочностью не только при комнатной, но и при повышенных температурах, а также обладают хорошей коррозионной стойкостью. При замене сплава В95 сплавами 1450 и 1451 (последний предназначен главным образом для изготовления листов) масса конструкции может снизиться на 8-10% при повышении жесткости до 10%. Высокой жаропрочностью при температурах до 225 0 С обладает сплав ВАД23, дополнительно содержащий марганец и кадмий.

Для замены сплавов типа Д16 на базе системы Al-Mg-Li-Cu разработаны сплавы 1430 и 1440 с более низкой (на

8%) плотностью, повышенным (на 10%) модулем упругости и достаточно высокой трещиностойкостью. Сплав 1430 отличается от сплава 1440 повышенной (в 1,5-2 раза) пластичностью и несколько уступает ему по характеристикам малоцикловой усталости.

Интенсивные работы по созданию алюминий-литиевых сплавов велись также в США, Великобритании и Франции. В середине 80-х годов появились сплавы 2090 системы Al-Cu-Li, 2091 системы Al-Cu-Li-Mg, 8090 и 8091 системы Al-Li-Cu-Mg и публикация состава сплава Navalite системы Al-Mg-Li-Cu.

Сплавы 2090 (аналог отечественного сплава 1450) и 8091 предложены для замены высокопрочных сплавов типа 7075 (отечественные сплавы типа В95), по сравнению с которыми они имеют пониженную на 8-10% плотность и повышенный модуль упругости.

Сплавы 8090 (аналог отечественного сплава 1440), 2091 и Navalite (аналог сплава 1430) рекомендованы для замены сплавов средней прочности с повышенной трещиностойкостью типа 2024 и 2014 (типа Д16 и АК8), по сравнению с которыми они имеют пониженную (на

8%) плотность и повышенный (на

10%) модуль упругости.

Химический состав (основных легирующих и примесных элементов) алюминий-литиевых сплавов приведен в таблице 1.

ТАБЛИЦА 1. Химический состав, плотность ρn и модуль упругости Е алюминий-литиевых сплавов

МаркасплаваМассовое содержание элементов, %ρ,г/см 3Е,ГПа
LiMgCuZrScFeSi(не более)
14201,8-2,34,5-6,00,08-0,150,20,152,4776
14231,8-2,23,2-4,20,06-0,100,10-0,200,150,102,5077
14301,5-1,92,3-3,01,4-1,80,08-0,140,150,102,5779
14402,1-2,60,6-1,11,2-1,90,10-0,200,150,102,5680
14501,8-2,3≤0,22,7-3,20,08-0,160,150,102,679,5
14511,5-1,8≤0,22,7-3,20,08-0,160,150,102,6378,5
ВАД230,9-1,44,8-5,80,4-0,8 Mn0,1-0,25 Cd0,30,22,7276
80902,2-2,70,6-1,31,0-1,60,04-0,160,300,22,5479,5
80912,4-2,80,5-1,21,6-2,20,08-0,160,500,32,5680
20901,9-2,60,252,4-3,00,08-0,150,120,12,5980
20911,7-2,31,1-1,91,8-2,50,04-0,160,300,22,5778
Navalite1,6-2,81,7-3,90,9-1,40,14

Отечественные сплавы несколько отличаются от соответствующих зарубежных аналогов по содержанию основных легирующих элементов и дополнительным комплексным микролегированием. Кстати, за рубежом нет аналога отечественному сплаву 1420. Это объясняется значительными трудностями при плавке и литье сплавов системы Al-Mg-Li. Поэтому зарубежные фирмы сосредоточили свои усилия на разработке и освоении более технологичных, но менее плотных, чем 1420, сплавов систем Al-Cu-Li и Al-Cu-Li-Mg.

В процессе освоения промышленного производства полуфабрикатов из сплава 1420 у нас были решены сложные технологические проблемы, характерные и для других алюминий-литиевых сплавов, обусловленные:

присутствием химически активных элементов – лития и магния;

высокой степенью легирования, достигающей 14% (атомное содержание);

сильной локализацией деформации в полосах скольжения и интенсивным упрочнением с резким уменьшением пластичности при холодной пластической деформации;

отсутствием режимов смягчающего отжига, обеспечивающего разупрочнение и повышение пластичности до уровня, необходимого для осуществления значительной холодной деформации;

пониженной пластичностью и вязкостью разрушения в высотном направлении массивных полуфабрикатов.

Большое внимание было уделено таким вопросам:

уменьшение газосодержания в сплаве;

повышение чистоты по таким примесям, как Na, K, Fe, Si;

отработка технологии получения полуфабрикатов с регламентированной микроструктурой, включая листы с ультрамелкозернистой структурой для сверхпластичной формовки;

отработка технологии сварки плавлением, обеспечивающей высокие ресурсные характеристики.

Из алюмимний-литиевых сплавов изготавливают практически все виды полуфабрикатов – прессованные, штамповки, плиты, листы.

Теперь рассмотрим влияние различных факторов на свойства промышленных сплавов Al-Li.

Работоспособность алюминий-литиевых сплавов определяется главным образом такими ресурсными характеристиками, как скорость роста трещины усталости, коэффициент интенсивности напряжений в вершине трещины (Кс, К), малоцикловая усталостная долговечность, сопротивление коррозионному растрескиванию, расслаивающая и межкристаллитная коррозия.

На уровень указанных свойств большое влияние оказывает ряд факторов. К наиболее важным факторам относятся:

· характер зеренной структуры: степень рекристаллизации, анизотропии формы зерна, наличие и плотность выделений на границах зерен и субзерен, наличие приграничных зон, свободных от выделений;

· холодная деформация растяжения между закалкой и старением полуфабрикатов;

· режим искусственного старения.

Влияние зеренной структуры на свойства сплавов. Полуфабрикаты с преимущественно рекристаллизованной структурой обладают более высокими характеристиками вязкости разрушения и трещиностойкости при несколько пониженных прочностных свойствах по сравнению с нерекристаллизованной структурой.

Наилучшие результаты обычно получают на полуфабрикатах с мелким, близким к равновесной форме, зерном. Однако повышение вязкости разрушения не всегда связано с наименьшим размером зерна. Положительный эффект наблюдается также на полуфабрикатах, в которых в процессе перестраивания выделяются частицы вторичных фаз – Т2, S. Полуфабрикаты с рекристаллизованной структурой характеризуются повышенным сопротивлением расслаивающей коррозии.

Ссылка на основную публикацию
Adblock
detector